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Abstract: This paper deals with the saturated control problem of a class of distributed systems
which can be modelled by first-order hyperbolic partial differential equations (PDE). The
objective is designing a distributed-parameter state feedback with guaranteed performance for
this class of systems, using the Lyapunov stability theory and polynomial sum-of-squares (SOS)
programming. For this, a polynomial parameter varying (PPV) model is employed to exactly
represent the nonlinear PDE system in a local region of the state space and then, based on it, a
PPV state-feedback law is designed guaranteeing exponential stability and actuator saturation
in such region. The approach is illustrated here through the standard example of a nonisothermal
plug-flow reactor.
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1. INTRODUCTION

Numerous processes in industry including fluid heat ex-
changers, fiber spin lines or fixed-bed reactors, are essen-
tially distributed in space, i.e. their behavior is determined
not only by the time but also by the spatial position.
Mathematical models for such systems can be obtained
by applying the fundamental thermodynamic principles
(balances of momentum, energy and material), resulting
in a set of semilinear hyperbolic PDEs (Aksikas, 2005).

These systems usually do not work in isolation in the
process and chemical industry, but work together as pieces
of a larger equipment directly involved in production ob-
jectives. Therefore, stability analysis and control of such
systems with guaranteed performance is of both theoreti-
cal and practical importance. As PDE systems are inher-
ently infinite-dimensional, the existent control approaches
for lumped-parameter systems (LPS) are hard to be used
directly (Wang et al., 2011): actual controller implemen-
tations should be done within a finite number of actuators
and sensors in practice. Thus, a guaranteed distributed-
parameter controller design becomes a challenging task.

Many research works have been proposed for the control
of PDE systems during the last decade. These methods
can be divided into two well-known types: “indirect” and
“direct” (Christofides, 2012). Indirect methods employ the
original PDE model to design an infinite-dimensional con-
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troller (Ray, 1981), with its inherent difficulties, and it is
then lumped for real implementation. Direct methods ap-
ply spatial discretization methods (e.g., finite differences,
finite volume, orthogonal collocation or Galerkin’s meth-
ods) to the PDE system in order to obtain an approximate
model that contains a set of ordinary differential equations
(ODEs) in time (Dochain et al., 1992). The subsequent
ODE model is then used as the basis for the design of finite
dimensional controllers. This approach benefits from the
direct application of finite-dimensional control theory and
methodologies but it has the important drawback of that
the discretized ODE size may be very significant in order to
reach the desired degree of approximation. This drawback
causes the controller design to become high dimensional
in structure and computationally complex.

The stabilization for tubular reactors in particular has
been done typically using PIDs (despite the fact that
such systems are nonlinear), provided suitable locations of
sensors and actuators to ensure passivity (Alonso and Yd-
stie, 2001). PID designs are based on local linear models,
obtained in different operation regions by input-output lin-
earization (Aguilar et al., 2002; Mikhalevich et al., 2015).
Though the use of PID controllers is quite simple, the main
drawback arises in finding the right tuning in order to pro-
vide good robustness/performance trade-offs. In addition,
even if a good trade-off has been achieved in practice,
there is no guarantee of constraints satisfaction in the
entire operating region. Recently, some works have given
alternatives to the PID control of PDE systems. In partic-
ular, Aksikas et al. (2007) proposed an LQR control de-
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sign for nonisothermal PFRs using spectral factorization,
and Wang et al. (2011) presented a fuzzy Takagi-Sugeno
(TS) approach (quasi-LPV) for such systems based on
linear matrix inequalities (LMI) and the well-known sector
nonlinearity modelling (Tanaka and Wang, 2001). Nev-
ertheless, there is still a common drawback for practical
implementation of the above designs: the actuator’s physi-
cal limitations are sometimes neglected or their treatment
leads to very conservative controllers. However, treating
them appropriately throughout the control design is key.
There are, of course, other control strategies based in op-
timization (e.g., model predictive control) which explicitly
consider input/state constraints, not discussed here.

Recently, TS/LPV modelling techniques have been ex-
tended to employ polynomial vertex models (Tanaka et al.,
2009b) instead of linear ones. This class of polynomial
parameter-varying (PPV) representation allows asymptot-
ically reducing conservativeness of the design approach if
the Taylor series decomposition is used for the sector mod-
elling (Sala and Ariño, 2009). Then, the sum-of-squares
(SOS) programming developed for pure polynomial sys-
tems (Papachristodoulou and Prajna, 2005; Pitarch et al.,
2016b) is used to design PPV-based control systems with
guaranteed performance (Tanaka et al., 2009a; Sala, 2009;
Pitarch, 2013). Numerical solutions for these designs can
be computed via the Gram-matrix decomposition and
semidefinite programming (SDP) (Seiler, 2013).

The objective of this paper is extending the existent
LPV control designs for a nonisothermal plug-flow reactor
(PFR) to a PPV approach, including explicit consideration
of the actuator limits from the design phase. First, a
PPV-PDE model based on the Taylor series is proposed
to accurately represent the nonlinear hyperbolic PDE
system. Then, based on this model, a PPV state-feedback
with antiwindup is proposed. In this way, the problem of
finding suitable controller gains fulfilling input-saturation
and guaranteeing local exponential stability of the closed-
loop system is derived in terms of a set of spatially-
dependent polynomial constraints, to be checked for SOS.

Briefly, the rest of the paper organizes as follows: Section 2
describes the PFR, its thermodynamic model and gives a
PPV local representation for it; Section 3 states the control
problem and its formulation into a SOS programming
problem; Section 4 shows the effectiveness of the proposed
approach with some results in simulation and, finally, a
conclusion is drawn in the last section.

Notation: I stands for the identity. D[v] denotes a diag-
onal matrix formed by the elements of v. M [k] will denote
the k-th row of the matrix M . A symmetric matrix P (x)
in the spatial variable x is positive definite (semidefinite)
in an interval l1 ≤ x ≤ l2 if P (x) � 0 (P (x) � 0) for all
x ∈ [l1, l2]. The symbol (∗) denotes the symmetric element
in matrix expressions, e.g., [M(x)+N(x)+(∗)] ≡ [M(x)+
N(x) +MT (x) +NT (x)]. A SOS polynomial p(y) in vari-
ables y is denoted by p(y) ∈ Σy. Similarly, an n×m SOS
polynomial matrix L(y) will be denoted by L(y) ∈ Σn×m

y .

2. PLUG-FLOW REACTOR MODELLING

A nonisothermal PFR is an ideal flow reactor in which
no back mixing occurs while a chemical reaction of the

form A → b̃B takes place, being b̃ > 0 the stoichiometric
coefficient. Thus, the composition of the reaction mixture
changes along the length x of the reactor, as represented
in Figure 1. The reaction is endothermic and a jacket is
used to heat the reactor, so that the system is dissipative,
therefore open-loop stable.

Fig. 1. Nonisothermal plug-flow reactor.

In Figure 1, CA and CB are the reactant and product
concentrations respectively, T denotes the reactor temper-
ature, Tin/out and CA,in/out are defined as the temperature
and concentration of the inlet/outlet streams respectively,
FB is the partial flow of product B, and L denotes the
total length of the reactor. Under assumptions of perfect
radial mixing, constant density and heat capacity of the
reacting liquid, and negligible diffusive phenomena, a dy-
namic model of the process can be derived from material
and energy balances. Note that CB is known if CA and T
are known, so its mass balance has been omitted and only
states T and CA will be considered henceforth:
∂T

∂t
= −v

∂T

∂l
− k0∆H

ρpCp
CA · e− E

RT +
4h

ρpCpd
(TJ − T ) (1)

∂CA

∂t
= −v

∂CA

∂l
− k0CA · e− E

RT (2)

Where E, R, k0, ∆H, h and d are the activation energy, the
ideal gas, the pre-exponential factor, the enthalpy of the
reaction, the wall heat transfer coefficient and the reactor
diameter, respectively. The control input is chosen to be
the spatially distributed jacket temperature TJ and t, l
denote the independent time and space variables.

The process is subject to the boundary conditions

T (0, t) = Tin, CA(0, t) = CA,in, CB(0, t) = 0 (3)

and the initial state-conditions profiles are:

T (l, 0) = T0(l), CA(l, 0) = CA0(l) (4)

2.1 Nonlinear dimensionless PDE model

A scaled model will be obtained in order to compensate
large differences in the magnitude orders of states, avoid-
ing thus numerical problems in the SOS design phase.
Hence, the following dimensionless states and input are
introduced:

χ1 :=
T − Tin

Tin
, χ2 :=

CA,in − CA

CA,in
, φJ :=

TJ − Tin

Tin
(5)

Define also x := l/L. Then an equivalent representation
of (1)-(2) in variables (5) can be obtained (omitted for
brevity 1 ). Note that the dimensionless equilibrium profile
(t → ∞) in one variable can be computed given a prefixed

1 The reader is referred to Aksikas (2005, Chap. 5) for the system
description with more details.
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