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Abstract: We consider the problem of resilient dynamical state estimation in the presence of
integrity attacks. We conduct resilience and performance analysis for a convex optimization
based estimator. The employed approach for analyzing resilience of an estimator is novel and
generic for a wide class of estimators and thus can achieve greater generality, as long as an
estimator can be decomposed into a convex optimization based form. We show sufficient and
necessary conditions for resilience with a trivial gap. The tradeoff between minimum mean
square error (MMSE) optimality and resilience is well investigated. Due to the constructive
proof of the main results using the force analogy, we present an upper bound on the damage an
attacker can cause when the sufficient condition is satisfied. Simulation results are also given to
validate the resilience and performance analysis.
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1. INTRODUCTION

Cyber-physical security has received much research atten-
tion (Cárdenas et al., 2008) in last decade. Typically, the
sensors are vulnerable to integrity attacks since in most
cases they are spatially distributed and cannot be fully
protected. Compromised data detection via fault detection
and isolation based methods has been extensively studied,
(Pasqualetti et al., 2010, 2011; Fawzi et al., 2012; Chong
et al., 2015). However, in most of these works, the system is
assumed to be noiseless, which greatly favors the failure de-
tector. In (Mo et al., 2010), the authors studied the worst
bias an attack can cause through reachability analysis and
ellipsoid approximation. In (Mishra et al., 2015; Chong
et al., 2015; Shoukry and Tabuada, 2015; Mo and Murray,
2015), they designed different robust estimators grounded
on the so-called sparsity observability conditions.

If the fundamental sparsity observability conditions is
violated, no resilient estimator exists. This, however, is
not enough. Instead of designing resilient estimators like
(Fawzi et al., 2012; Mishra et al., 2015; Chong et al.,
2015; Shoukry and Tabuada, 2015; Mo and Murray, 2015),
we conduct the research in a reverse way. We make our
efforts to answer the questions: given an estimator, what
can we talk about its resilience and performance? And
are there any systematic analysis procedures we can use?
We illustrate an analytical approach to solve the problem
by taking a convex optimization based estimator as an
example. Our proposed approach can be applied to analyze
the resilience of a class of commonly used estimators and
the estimation performance can be quantified, which is
always ignored in the existing works.

The significance of this work is threefold. (i) We propose a
framework for studying cyber-physical security problems
by formally defining three key ingredients, i.e., (p,m)-

sparse attacks, resilience and translation invariance. (ii)
The employed approach for analyzing resilience of an
estimator is novel and generic for a class of estimators.
Though we take an estimator with L1-penalty as an
example, the convex optimization based analysis applies to
a large number of estimators. We analyze the sufficient and
necessary conditions for resilience and the conclusion that
benign sensors must be more than malicious sensors aligns
with the results in different research scenarios (Fawzi et al.,
2012; Mishra et al., 2015; Chong et al., 2015; Shoukry
and Tabuada, 2015; Mo and Murray, 2015). (iii) The
tradeoff between MMSE optimality and resilience is well
studied. The condition that the resilient estimator gives
the MMSE estimate without attacks is given. A nontrivial
upper bound on the gap between the resilient estimate and
the MMSE estimate is also derived.

Notations : The ith entry of the vector u is denoted as
u[i]. The Lp norm of the vector u is denote as ‖u‖p. If
unspecified, ‖u‖ means the L2 norm of u by default. �v�
means the largest integer that is less than the scalar v. For
a given set X , |X | denotes its cardinality.

2. PROBLEM SETUP

2.1 System Model

Assume that m homogenous sensors are measuring the
following LTI system:

x(k + 1) = Ax(k) + w(k). (1)

The measurement equation for the ith sensor is given by

yi(k) = Cx(k) + εi(k), i = 1, . . . ,m, (2)

where x(k) ∈ Rn is the state, yi(k) ∈ Rl is the measure-
ment collected by the ith sensor, w(k) ∈ Rn and εi(k) ∈ Rl

are the process noise and measurement noise for the ith
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sensor, respectively. The noise w(k) and εi(k)’s are Gaus-
sian distributed, i.e., w(k) ∼ N (0, Q), εi(k) ∼ N (0, R).
The noises are assumed to be independent from each
other across different time instants and sensors. Denote
the tall measurement matrix H � [C�, C�, . . . , C�]� ∈
Rlm×n and y(k) � [y1(k)

�, y2(k)
�, . . . , ym(k)�]� and Σ �

diag(R, . . . , R), R > 0. The initial state x(0) is Gaussian
distributed with mean µ0 and variance P0, and is inde-
pendent from all noises. Assume that (A,C) is observable
and (A,

√
Q) is controllable. Denote the index set of the

sensors as S � {1, . . . ,m}.
Kalman filter is well known as the recursive minimum
mean square error (MMSE) estimator:

x̂KF (k) = (A−K(k)HA)x̂KF (k − 1) +K(k)y(k),

P−(k) = AP (k − 1)A� +Q,P (k) = (In −K(k)H)P−(k),

where the Kalman gain is given by

K(k) = P−(k)H�(HP−(k)H� +Σ)−1. (3)

The state error covariance P−(k) converges exponentially
fast to P which is obtained by solving the following discrete
algebraic Riccati equation (DARE):

X = AXA� −AXH�(HXH� +Σ)−1HXA� +Q. (4)

Therefore, we assume the Kalman filter to be in the steady
state, i.e., P (k) = (In −KH)P and K(k) = K from (3).

Due to the homogeneousness of the sensors, we know that
K can be written into the form of [G, . . . , G] , G ∈ Rn×l.
The Kalman filter can be equivalently rewritten as:

x̂KF (k) =
1

m

∑
i∈S

x̃i(k), (5)

where

x̃i(k) = (A−KHA)x̃i(k − 1) +mGyi(k), (6)

This means the estimation process at the estimator can
be decomposed into m sub-processes each of which only
involves measurements from one sensor. This decomposi-
tion renders distributed estimation possible. To be spe-
cific, the sensor can locally compute x̃i(k) based on its
own measurements and then the information fusion of all
local estimates occurs at the remote estimator. It is worth
noting that such distributed estimation is more resilient
to attacks than the centralized estimation (all sensors
transmit raw measurements to a central estimator). Since
each local estimate of one sensor encodes all its historical
measurements, corruption of one local estimate at some
time instant causes little damage to the estimation.

Even if the sensor lacks computational capability and can
only transmit raw measurements, each local estimation
process can be computed at the central estimator. There-
fore, without loss of generality, we assume each sensor
computes a local estimate based on (6) and sends it to
the estimator.

2.2 Attack Model

The attacker launches an integrity attack to the sensory
data in different fashions. For example, it can change the
physical environment to mislead the sensors or it hacks the
onboard sensor chip or it can manipulate the data packet
during the sensor-to-estimator transmission. No matter

in which way the attack is launched, we can rewrite the
measurement equation into

zi(k) = x̃i(k) + ai(k), (7)

where zi(k) ∈ Rn is the “manipulated” local estimate
and ai(k) ∈ Rn is the attack vector. In other words, the
attacker can change the local estimate of the ith sensor by
ai(k). If the sensor is safe, then ai(k) = 0. Define the local

estimation error as ei(k) � x̃i(k)− xi(k). Then we have

zi(k) = x(k) + ei(k) + ai(k). (8)

For concise notations, denote

x̃(k) � [x̃1(k)
�, x̃2(k)

�, . . . , x̃m(k)�]�. (9)

Similarly we can define z(k), e(k), a(k). For any index set

I ⊆ S, define the complement set to be Ic � S\I. In
our attack model, we assume that the attacker can only
compromise at most p sensors but can arbitrarily choose
ai(k). The index set of malicious sensors is assumed to
be time invariant. Formally, a (p,m)-sparse attack can be
defined as

Definition 1. ((p,m)-sparse attack). A vector a is called a
(p,m)-sparse attack if there exists an index set I ⊂ S,
such that (i) ‖ai(k)‖ = 0, ∀i ∈ Ic; (ii)|I| ≤ p, both hold.

Define the collection of a possible index set of malicious
sensors as C � {I : I ⊂ S, |I| = p}. The set of all

possible (p,m)-sparse attacks is denoted as A = A(k) �⋃
I∈C{a(k) : ‖ai(k)‖ = 0, i ∈ Ic}, ∀k.

After introducing the (p,m)-sparse attack, we need to
formally define what we mean by resilience.

Definition 2. (Resilience). An estimator g : Rmn �→ Rn

which maps the measurements z(k) to a state estimate
x̂(k) is said to be resilient to the (p,m)-sparse attack if it
satisfies the following condition:

‖g(x̃(k))− g(x̃(k) + a(k))‖ ≤ µ(x̃(k)), ∀a ∈ A, (10)

where µ : Rmn �→ R is a real-valued mapping on x̃(k).

The resilience implies that the disturbance on the state
estimate caused by an arbitrary attack is bounded. A
trivial resilient estimator is g(y) = 0 which provides a very
poor estimate. Therefore, another desirable property for
an estimator is translation invariance defined as follows,
where E � [In, . . . , In]

�:

Definition 3. (Translation invariance). An estimator g is
translation invariant if g(z + Eu) = u+ g(z), ∀u ∈ Rn.

2.3 A Generic Resilient Estimator

Apparently, the linear estimator (5) cannot give an esti-
mate with bounded error even when only one estimate is
arbitrarily manipulated. In other words, there is a conflict
between the MMSE optimality and the resilience against
attacks. One of the main tasks is to analyze an estimator
which may achieve a desirable tradeoff between MMSE
optimality and resilience, and investigate the sufficient
and necessary conditions to be resilient to (p,m)-sparse
attacks. To this end, a general estimator is proposed as
follows:

x̂(k) � g(z(k)) = arg min
x̂(k)

∑
i∈S

ϕi(zi(k)− x̂(k)), (11)

where ϕi : Rn �→ R. We notice that to recover Kalman
filter we can choose ϕi to be L2 norm. The candidate
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