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Abstract: In this paper, we consider a dynamic model of a three-phase power system including
nonlinear generator dynamics and transmission line dynamics. We derive conditions under which
the power system admits a steady-state behavior characterized by an operation of the grid at
a synchronous frequency as well as a power balance for each single device. Based on this, we
specify a set on which the dynamics of the power grid match the desired steady-state behavior
and show that this set is control-invariant if and only if the control inputs to the generators are
constant. Moreover, we constructively obtain network balance equations typically encountered
in power flow analysis and subsequently show that the power system can be operated at the
desired steady-state if and only if the network balance equations can be solved.
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1. INTRODUCTION

The electric power system has been paraphrased as the
most complex machine engineered by mankind (Kundur,
1994). Aside from numerous interacting control loops, the
power system physics are highly nonlinear, large-scale, and
contain dynamics on multiple time scales from mechanical
and electrical domains. As a result power system analysis
and control is typically based on reduced models of var-
ious degrees of fidelity (Sauer and Pai, 1998). A widely
accepted reduced power system model is a structure-
preserving multi-machine model, where each generator
model is reduced to the swing equation describing the in-
teraction between the generator rotor and the grid, which
is itself modeled at quasi-steady-state via the nonlinear
algebraic power balance equations. Despite being based
on time-scale separations, quasi-stationarity assumptions,
and multiple simplifications, this prototypical model has
proved itself useful for power system analysis control (Kun-
dur, 1994; Sauer and Pai, 1998). Nevertheless, the validity
of the simplified model has always been a subject of de-
bate; see (Caliskan and Tabuada, 2015; Monshizadeh et al.,
2016) for recent discussions.

The modeling, analysis, and control of power systems has
seen a surging research activity in the last years. One par-
ticular question of interest concerns the analysis of a first-
principle nonlinear multi-machine power system model
without simplifying generator modeling assumptions and
with dynamic (and not quasi-stationary) transmission net-
work models. Fiaz et al. (2013) consider a highly de-
tailed power network model based on port-Hamiltonian
system modeling, and they carry out a stability analysis
for a single generator connected to a constant linear load.
Caliskan and Tabuada (2014) consider a compositional
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stability analysis of a power network using incremental
passivity methods. Their analysis requires, among others,
the assumptions of a constant torque and field current at
the generators. Unfortunately, their analysis also requires
a power preservation property that is hard to verify and
whose inherent difficulty is rooted in the dg0 coordinates
that are convenient for a single generator but incompatible
for multiple generators (Caliskan and Tabuada, 2016).

Barabanov et al. (2016) study a single generator in isola-
tion and improve upon the previous papers by requiring
milder conditions to certify stability, though it is unclear
if the analysis is scalable to a multi-machine system. Re-
lated stability analyses have also been carried out also
for detailed models of grid-forming power converters that
emulate the dynamics of generators (Natarajan and Weiss,
2014; Jouini et al., 2016). Finally, detailed generator mod-
els with the grid modeled by quasi-stationary balance
equations are studied by Stegink et al. (2016); Dib et al.
(2009). In particular, Dib et al. (2009) study existence of
equilibria to the nonlinear differential-algebraic model.

In this paper we study the port-Hamiltonian power system
model derived from first-principles in abc coordinates by
Fiaz et al. (2013). We seek answers to similar questions
as in (Dib et al., 2009): under which conditions does
there exist a desired steady-state behavior. Our definition
of steady-state behavior is inspired by an energy-based
framework that suggests that a desired steady-state is
characterized by a constant energy in each storage element,
and requires that all three-phase AC signals are balanced,
sinusoidal, and of the same synchronous frequency.

We provide an algebraic characterization that relates the
state variables, control inputs, and a target synchronous
frequency such that the dynamics of the power grid co-
incide with the target steady-state dynamics. Loosely
speaking, this set describes a steady-state locus (Isidori
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and Byrnes, 2008) provided that it is invariant. We show
that this set is control-invariant if and only if the target
synchronous frequency is constant and all torque and field
current inputs are constant as well, thereby supporting the
assumptions in (Caliskan and Tabuada, 2014).

Moreover, we can trace our algebraic feasibility conditions
to a simple criterion: the power system (with constant
inputs) admits the desired steady-state behavior if and
only if the usual network balance (or power flow) equations
can be solved. Further results, including a discussion of
rotating coordinate frames, can be found in (Grofl et al.,
2016). We believe that our analysis is a first step towards
a stability study of first-principle power system models
formulated in stationary coordinate frame (i.e., abc).

This paper is organized as follows: In Section 2, we intro-
duce some basic definitions as well as the first-principle
nonlinear dynamical model of a power network. We briefly
motivate our approach by considering a power balance
condition obtained from the Hamiltonian of the power
network and specify desired steady-state dynamics. The
main result is presented in Section 3. Finally, the paper
closes with some conclusions in Section 4.

2. NOTATION AND PROBLEM SETUP
2.1 Notation

We use R and N, to denote the set of real numbers and
integers, and e.g. R-( to denote the set of positive real
numbers. For column vectors z € R", y € R™ we use
(z,y) = [z7 yT]T € R*™™ to denote a stacked vector,
and for vectors or matrices z, y we use diag(z,y) = [8 2]
Furthermore, I,, denotes the identity matrix of dimension
n, and ® denotes the Kronecker product. Matrices of
zeros and ones of dimension n X m are denoted by O, xm
and 1,,xm, and 1,, denotes a column vector of ones of
length n. We use arctan2(y,z) : R? — Rjo,x) to denote
the four-quadrant version of the arctangent function with
arctan2(0,0) = 0.

2.2 Dynamical Model of a Power Network

The power network model used in this work consists of
ng generators with index set G = {1,...,n4}, n, voltage
buses with index set V.= {1,...,n,}, and n; transmission
lines with index set T = {1,...,n;}. The voltage buses are
partitioned into generator buses V, = {1,...,n4} and ny
load buses V; = {ny +1,...,ny +n}, ie. n, = ng +ny.

The Model used throughout this manuscript is a variant
of the port-Hamiltonian model by Fiaz et al. (2013). The
reader is referred to Fiaz et al. (2013) and the references
therein for a detailed derivation. We will first present our
model and then discuss the differences to Fiaz et al. (2013).

The following assumption is required to prove the main
result of the manuscript.
Assumption 1. Tt is assumed that all three-phase electri-

cal components (resistance, inductance, capacitance) have
identical values for each phase.

Generators: A generator with index k& € G is modeled by

0 = My, "y
Pr = —Dp My, D — Tep + Tk
—1
N —1 CL ax
A = Rk£97k)\k + [ Vi ] ,

where Ay = (Aak, Agks Afx) € R? represents the stator
and rotor flux linkage, ¢x = (qa.k,qsk) € R? are the
charges of the generator bus capacitors, py € R is the mo-
mentum of the rotor, and 6, € R its angular displacement.
The generator is actuated by the voltage vy € R across
the excitation winding of the generator and the mechanical
torque 7, € R applied to the rotor. The electrical torque

acting on the rotor is denoted by 7. = %(%A;E;ikk) €
R. The rotor has inertia M}, damping Dy, the windings
have resistance Ry = diag(Rsk,7sx) € R332, Rgp =
I, ®rg ), and the inductance matrix Lq 5 € R3*3 is given
by
Lesr Ro.Lmi
£ — Ss, k m, ; 2
0.k [L;rz,kR;—k Loy (2)
where Losp = Io®lss iy Lk = (Lng,0) € R2, and
lss,g € Ruo, lime € Rso and Ly, € Ry. The rotation
matrix Rp, € R?*2 is given by:
Ry — cos(0r) —sin(y)
O = Isin(fy) cos(fy) |-

Finally, using skew symmetric matrices j and -
.10 -1 .| 7 0oy
R )
it can be verified that the electrical torque is given by:
1 -1 e
Tek = §AZ(£9,}€JT + 7Ly 1) M (4)

Furthermore, the stator current i, ;, and excitation current
iy are given by i = (is,k,if,k> = E;i)\k € R3.

(3)

Interconnection Graph:  Voltage buses are intercon-
nected by a transmission network. The topology of the
transmission network is described by the incidence matrix
E € R™*™ of its associated graph. In the remainder
matrix £ € R?"v*2% which can be partitioned as follows,
is used:

&g
E=E®I =

S .
5(17”71

- Ern,]. (5)

Voltage Buses: ~ The dynamics of the n, voltage buses
connected to the generators with index k € V, are given by

dr = =GO} ta, — Iz O2x1] C‘gj;lﬁ)\k — &kl A, (6)

with bus capacitance Cy = Is ® ¢, and bus conductance
G = I3 ® gi. Finally, the transmission lines are described
by the line inductance Ly = diag(Lr1,...,L1y,), where
Lty = I2®Ilry, and the vector of transmission line
fluxes \r = (Ar1,...,A\1n,) € R where A\py =
(Ao ks A1 pk) € R? is the flux of the transmission lines
keT.

Similarly, the dynamics of the load buses are given by:
@ = —GrCy ar — EqiLy ' Ar, Vk eV, (7)
where the conductance G, models linear resistive loads.
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