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Abstract: We analyze the dissipativity in a large-scale network system, which is composed
of a large number of internally connected components. Assuming that every component has
special passivity property, we show that the network system inherits the same property of the
component independently of the network scale. In addition, the dissipation performance of the
network system, evaluated by the H, norm, is gradually reinforced via network expansion. This
analysis can be a fundamental principle of constructing large-scale dynamical systems.
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1. INTRODUCTION

This paper is devoted to analysis of dissipativity and its
reinforcement in a large-scale network system.

Realistic network systems are not large-scale at the first
stage, but are gradually built up. Let us consider a power
system in next generation, which is composed of a large
number of natural energy generations such as solar, wind,
or thermal power generations. By gradually involving such
generations, the entire power system expands its own scale
and becomes a large-scale network. We need to design
the expanding power network such that the electricity is
stably supplied to consumers at any expanding stage. In
addition, the network should keep a desired constant power
frequency under large fluctuations caused by the natural
energy resources.

There have been studies that address system design and
control problems of large-scale systems, particularly focus-
ing on their scale-expansion: Additional components are
connected to a base system one after another and the scale
of the entire system is gradually expanded. See the papers
by Tan and Tkeda (1990); Stoustrup (2009); Antsaklis et al.
(2013); Goodwine and Antsaklis (2013); Sadamoto et al.
(2015). For such expanding systems, problems of stability
analysis and stabilization are addressed under the concepts
namely expanding construction by Tan and Ikeda (1990),
plug and play control by Stoustrup (2009), compositional
stabilization by Goodwine and Antsaklis (2013); Antsaklis
et al. (2013), and so on. Another approach to stabilization
of expanding systems is passivity-based design, see the
works by e.g., Moylan and Hill (1978); Bai et al. (2011).
The passivity theorem (Zames (1966)) states that assum-
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ing that each component is passive, the network system
constructed in a specified connection rule is passive. On
the basis of the theory, stable expanding systems can be
designed.

The strategy for system design in such conventional works
does not impair the stability or not deteriorate the perfor-
mance of the entire system by expansion. The final goal
of this work, exploiting the expansion, we aim to find a
design principle where the network expansion strictly and
gradually improves its performance.

In this paper, we analyze the dissipativity in a large-scale
network system, which is composed of a large number
of internally connected components. Assuming that every
component has special passivity property, we show that
the network system inherits the same property of the
component independently of the network scale. In addi-
tion, the dissipation performance of the network system,
evaluated by the H., norm, is gradually reinforced via
network expansion. This analysis can be a fundamental
principle of constructing large-scale dynamical systems.

Notation: The symbol 7{-} represents the maximum sin-
gular value of a matrix. The symbol RH is the set of all
proper and complex rational stable transfer functions. For
a linear time-invariant system ¥ whose transfer functions

3(s) is in RH oo, the Hoo norm is defined by

IZl|%. := sup T{X(s)}.
Re[s]>0

The symbol C(c,r) represents a disk on the complex
plane whose center and radius are given by (¢,0) and r,
respectively:

Cle,r) = {x+yi6(C|(3:—c)2+y2 §r2}.
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Fig. 1. Network system XNw. A number of subsystems
¥, i € {1,2,...,N} are connected each other in a
specified rule as in (a). The network system illustrated
in (a) is expressed as the feedback form as in (b).

2. SYSTEM DESCRIPTION AND DISSIPATIVITY

In this paper, we consider the network system Xnw
illustrated in Fig. 1. Each subsystem ¥;, i € {1,2,...,N}
is a linear time-invariant (LTT) system described by the
state equation:

5 {z = féﬁzig%: ief{1,2,..., N},
where z; € R™, u; € R™, y; € R™ denote the state,
input, and output of ¥;, and A; € R™"*™ B, € R™*™
C; € R™*"i and D; € R™*™ are the constant matrices.
Let w € R™ be the external input to the entire network
Snw and = [uf ug - uy |Tandy = [yl y3 - yy "
Then, the connection rule in 3;,4 € {1,2,..., N} is defined
as

u=Fw— Ly, (1)
where F' € R™N>X™m and L € R™V>X™N are the constant
matrices, which imply the effect of w to X; and the inter-
connection between ¥;, i € {1,2,..., N}, respectively. We
assume that F' is of full column rank. Further, we define
the output of Xnw by z € R™:

z=Fy, (2)
which is utilized for performance evaluation of Xnw.

Now, we give a definition of dissipativity (Willems (1972)).
For a matrix IT € R?™*2™  we define a function

s(IL,w, z) := [‘Z"TH[;"] (3)

Definition 1. The system ¥; is said to be dissipative w.r.t.
IT if there exists a continuously differentiable and positive
semi-definite function V; : R™ — Ry such that

- oVi(z;
Vi(w;) = ﬁf )(Aixi + Biu;) < s(ILugy:)  (4)

holds for all x; € R™, u; € R™, and y; = C;x; + D;u;.

In a similar manner, the dissipativity can be defined
for Xnw if it is well-posed. The dissipativity plays an
important role for characterizing a class of ¥; and for
evaluating the performance of Xnw.

Although the dissipativity by Willems (1972) is originally
defined with a more general function, that in Definition
1 is with the quadratic function s(IT,u;,y;). We further
restrict 1I as

I(a,b) == {‘1“ _1b] ® I,

where a and b are non-negative constants. Then, we give
the notation.

Notation 2. For given non-negative constants a and b, the
symbol D(a,b) denotes a set of dissipative systems w.r.t.
II(a,b).

Remark 8. The definition of D(a, b) is compared with con-
ventional passive systems. The system 3 is said to be pas-
sive, input-strictly passive (ISP), output-strictly passive
(OSP), and very-strictly passive (VSP) (see e.g., the work
by Hill and Moylan (1976)) if for some positive constants
a and b, ¥ is in D(0,0), D(a,0), D(0,b), and D(a,b),
respectively. Such conventional definitions describe quali-
tative property of a dynamical system. On the other hand,
D(a,b) explicitly describes quantitative performance of
a passive system. Quantitative performance is integrated
into the passivity in the works by Sakamoto and Suzuki
(1996); Oishi (2010); Antsaklis et al. (2013); Zhu et al.
(2014) as well. In them, y-passivity and passivity indices
are defined. The class D(a,b) in this paper is reduced
to y-passive systems or systems with passivity indices by
choosing a and b appropriately.

In the following remark and lemma, the class D(a,b) is
interpreted in the frequency domain.

Remark 4. Let a and b be respectively non-negative and
positive constants satisfying ab < 1. Further let ¥ be
a single-input-single-output (SISO) system. Then, the
Nyquist plot of ¥ € D(a,b) is included in C(e,r) € C,
where ¢ := 1/b and r := ¢/1 — ab. Furthermore, we see
that the maximum gain of ¥ € D(a, b) is bounded by c+r.

Even for a multiple-input-multiple-output system % &
D(a,b), the dissipation performance can be interpreted in
the frequency domain. See the following lemma.

Lemma 5. Let a and b be respectively non-negative and
positive constants satisfying ab < 1. Then, ¥ € D(a,b)
satisfies

(360~ 11m) (S0 - 31) < 152,
YweR, (5)

where %(s) is the transfer function matrix of . In addi-
tion, the H,, norm of ¥ satisfies

Sl < =

(6)

Proof. In a similar way to Chapters 2 and 4 in the book
by Brogliato et al. (2006), from (4) we have
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