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Abstract: The present paper deals with mobile robot circular formations realized by a
simple control law. This law is established by utilizing synchronization of coupled limit-cycle
oscillators. The stability of formations is analyzed, and the analytical results give a simple
procedure for designing a control law. This procedure allows us to choose a desired circular
formation. Furthermore, the analytical results guarantee that we can specify any radius of
circular formations. The results are verified by some numerical examples.
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1. INTRODUCTION

Unmanned vehicles have been used for a wide range of
purposes such as planetary exploration, environmental
monitoring and investigation/restoration work in dan-
gerous places (e.g., damaged nuclear plants). In recent
years, the cooperative use of multiple vehicles has at-
tracted interest in both academia and industry [Kumar
et al. (2005); Mesbahi and Egerstedt (2010)]. Formation
control is such an example where multiple vehicles are
required to form a specific formation pattern. Motiva-
tions for achieving formations come from various reasons,
depending on a specific application; e.g., to realize an
optical interferometer array by making satellites, each of
them is assumed to be equipped with a telescope, form a
desired spatial pattern [Mesbahi and Egerstedt (2010)]. In
formation control, of particular interest is the case when
each vehicle makes a decision by itself with only local
measurements/communications, and a global formation
pattern is achieved as a result of the decisions made by
each vehicle, i.e., there is no centralized controller that
supervises all the vehicles.

In our previous study [Yamada et al. (2011)], we focused
on circular formations for multiple mobile robots based
on a control law we developed for a single robot [Hara
et al. (2010)]. Circular formations of mobile robots have
some possible applications for enclosing/capturing a target
object, and collecting environmental data [Dunbabin and
Marques (2012)]. The control law [Hara et al. (2010)] was
designed using a nonlinear system with limit cycle, and a
formation control law was obtained based on this result.
Although this method was demonstrated by numerical
simulation and experiment, the approach adopted there

* This research was partially supported by JSPS KAKENHI
(26289131).

does not allow the in-depth theoretical analysis of the
formation control law.

Complex network science has created considerable interest
in various fields [Strogatz (2003)]. It is well accepted that
coupled oscillators have played a key role in complex
network science [Pikovsky et al. (2001)]. A number of
studies have been made on the collective phenomena in
coupled oscillators in order to clarify the fundamental
mechanism of various types of synchronization appeared
in complex networks [Boccaletti et al. (2006); Arenas et al.
(2008)]. In recent years, the mechanism is widely used in
engineering applications, such as locomotion control of a
biomimetic underwater vehicle [Zhou and Low (2012)],
synchronization of pulse-coupled oscillators for wireless
sensor networks [Okuda et al. (2011)], peak power reduc-
tion in energy storage oscillators coupled by delayed power
price [Fukunaga et al. (2016)], and so on [In et al. (2009)].

Our previous study suggested that synchronization in
coupled oscillators, which has been intensively investigated
in the field of nonlinear physics, can be used for control of
mobile robot circular formations [Hara et al. (2013)]. This
suggestion was experimentally verified with two-wheeled
mobile robots [Tsukiji et al. (2014)]. Unfortunately, these
our previous studies have major drawbacks:

(i) Tt is difficult to analyze the stability of formations;
(ii) The radius of circular formations cannot be specified.

The drawback (i) represents that we cannot design param-
eters for desired formations. The drawback (ii) implies that
all robots run on a common circle path; in other words,
we cannot avoid collision of robots.

The main purpose of the present paper is to overcome
the drawbacks (i) (ii). We show that the key idea for
overcoming them is to use only the polar coordinates for
stability analysis, while our previous studies used both
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Fig. 1. Two-wheeled mobile robots.

polar and rectangular coordinates. This idea drastically
simplifies the stability analysis; accordingly, we can pro-
vide a procedure for designing the parameters, and can
specify the radius. These analytical results are verified on
some numerical simulations.

2. CONTROL LAW FOR CIRCULAR FORMATIONS

Let us consider two-wheeled mobile robots sketched in
Fig. 1. We assume the kinematic model for the robots,
and the dynamics of robot 7 € {1,..., N} is described by
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where r; > 0 denotes the distance between the robot 7 and
the origin. x; € R and 0; € R are the angular velocity of
the robot ¢ around the origin and the angle between the
heading of the robot ¢ and its radial direction, respectively.
The angle between the radial direction of the robot i and
that of ¢ + 1 is denoted by ¥; € R.

The robot i is controlled by the following inputs: the
heading-direction component of velocity (v; € R) and
the angular velocity around the center of robot i (w; €
R). These control inputs are given by driving the two
wheels with appropriate rotational velocities. This paper
proposes a control law of these inputs which induce circular
formations. It should be emphasized that our previous
studies [Hara et al. (2013); Tsukiji et al. (2014)] employed
both of the polar coordinates and rectangular coordinates
to express the dynamics of the robots, while the present
paper employs only the polar coordinates.

Now we turn our attention to the reference dynamics of
radical direction and phases,

7;1‘ = f(’l““fl) = ar; (1 —

This paper utilizes these reference dynamics to establish
the control law. Note that the dynamics (2a) depends only
on the i-th distance r;. On the other hand, the dynamics
(2b) depends on the 4-th and (i + 1)-th phases, and is
one of the simplest models of well-known coupled phase
oscillators [Acebrén et al. (2005); Scardovi et al. (2007)].

(2a)

Fig. 2. Tllustration of vector field of dynamics of (2a), (2b)
and robot i.

Remark that ¢y denotes the angle between the radial
direction of robot 1 and that of N; thus, the dynamics (2b)
represents one-way ring coupled phase oscillators. 7; > 0
denotes the stable equilibrium point of the dynamics (2a).
The parameters, a € R and €2 € R, express the convergence
rate for 7; and the angular velocity around the origin.
€ € R is the coupling strength.

We establish the control law for v; and w; such that the
two-wheeled mobile robots (1) behave in the reference
dynamics. In Fig. 2, the vector field of the reference is
written over the robot i. The reference velocities in radial
direction (i.e., 7;) and in its vertical direction (i.e., r;k;) are
given by the reference dynamics (2). This paper proposes
the following control law: the velocity in heading direction
v; and the angular velocity w; are respectively set to
be proportional to the reference velocities in the radial
direction and in the vertical direction,

v; = U; = ky {f (ri,7;) cosb; + 1r;9(1h;) sin6; },
wi = W; = kg {rig(W;) cos; — f (ry, 7;)sinb; },

(3a)
(3b)

where k,, k., € R are feedback gains. In real situations, it is
difficult to realize large velocities v; and w; due to practical
limitation of the wheel rotational velocity. For such cases,
k., and k., have to be small to reduce the velocities.

Now let us restrict our attention to a situation where
the dynamics of robot 4, which is described by Eq. (1),
is controlled by the law (3). In order for the robot i to
be autonomously controlled, the robot i has to get the
following three real-time measurements used in the control
law (3) (see Fig. 1).

(a) ry: distance to the origin.
(b) 6;: angle to the heading direction.
(¢) ®;: angle to the robot i + 1.

While the requirement of these measurements comes from
the form of the control law we adopted, it is also feasible
in practice. This paper supposes that every robot has
sensors for measuring the distance to the origin r;, distance
to the next robot ¢ + 1, the angle between its radial
and the heading directions, and the angle between its
radial and (¢ 4+ 1)-th robot directions. Each robot gets
the measurements (a) and (b), but cannot (c¢) directly. It
is easy to see that the cosine formula allows the robot ¢
to compute (c) in real-time by using the measured data,
ri, the distance to the next robot i 4+ 1, and the angle
between its own radial direction and the direction to the
robot 7 + 1. In consequence, our robots can be considered
as fully autonomous robots.



Download English Version:

https://daneshyari.com/en/article/5002212

Download Persian Version:

https://daneshyari.com/article/5002212

Daneshyari.com


https://daneshyari.com/en/article/5002212
https://daneshyari.com/article/5002212
https://daneshyari.com

