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Abstract: In this paper, we deal with a distributed feedback control of quantum networks called
a quantum consensus algorithm (QCA) with local quantum observation and feedback proposed
by Kamon & Ohki (2013, 2014) and prove strictly that QCA makes quantum states converge to a
quantum state called symmetric state consensus (SSC) with probability one from arbitrary initial
states keeping purity. The difficulty of the proof is from that the objective system is stochastic
and non-linear, and we solve it by employing the stochastic Lyapunov stability analysis. We also
show that QCA can generate a desirable W-state, which is known as an important entangled
quantum state and utilized for many applications of quantum information technology.
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1. INTRODUCTION

Quantum control has been actively investigated to over-
come such problems as the generation or preservation of
quantum bits (qubits) under noisy environments Wiseman
& Milburn (2009). From the establishment of quantum
filtering theory Belavkin (1992), research about quantum
control has advanced and contributed to broad areas of
quantum information technologies Mirrahimi & van Han-
del (2007). However, as is the case with classical systems, it
is quite difficult to control quantum bits when the number
of bits is large because of the increasing complexity of
instrument networks (e.g., see Yokoyama et al. (2013) for
the case of optical systems). Then, a distributed operation
called quantum consensus, which is one of the distributed
quantum information applications, is a promising idea to
generate quantum states of large-scale quantum systems.

Mazzarella et al. (2013) have developed a framework of
quantum consensus as the extension of classical consensus
problems. They have defined several types of quantum
consensus states, derived their hierarchical relationship
and proposed a quantum version of gossip algorithm
which asymptotically generates a consensus state called
symmetric state consensus (SSC).

Their algorithm can be regarded as an autonomous system
like classical consensus systems and it contains no feedback
input operation depending on the current quantum states.
Then, in fact, Kamon & Ohki (2013) proved that the
algorithm loses the purity of quantum states during the
consensus operations. Purity is an important quantity for
application to quantum information technology and above
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fact is not desirable for the purpose of generating useful
quantum states. The similar approaches for consensus with
no feedback control (e.g. Sepulchre et al. (2010); Shi et al.
(2015, 2016)) also have this issue.

Motivated by the above fact, Kamon & Ohki (2013) and
Kamon & Ohki (2014) have proposed a hybrid type of the
distributed consensus algorithm and a distributed feed-
back with quantum state observation; projective measure-
ments, in order to realize SSC and high purity simulta-
neously. They have shown the efficiency of their control
scheme by numerical simulations and further expected
that their algorithm realizes artificial bosonization or ar-
tificial fermionization.

The convergence of their algorithm, however, has not been
proved and left for as an open problem. Then, in this
paper, we tackle with this open problem and solve it
completely. For more details, we modify the algorithm
proposed by Kamon & Ohki (2013, 2014) and give a strict
proof of the convergence to SSC from arbitrary initial
states keeping purity. The difficulty of the proof is from
that the dynamics is governed by two types of stochastic
processes; (1) probabilistic selection of local subsystems
among the whole networked quantum system, (2) feedback
control action depending on the probabilistic quantum ob-
servation results, projective measurements, of the selected
local subsystems. Therefore, the feedback control dynam-
ics depends on the state-depending complicated combina-
tions of the above stochastic processes and, as a result,
it is represented as “a stochastic non-linear equation.” In
fact, a simple idea of applying the Kraus map discussed
in Mazzarella et al. (2013) for their “deterministic linear
autonomous systems” is not applicable in our case and its
analysis requires strict dealing with the dynamics and the
combinations as discussed in our paper.
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To overcome the complexity of stochastic non-linear sys-
tems, we employ the stochastic version of the Lyapunov
stability theory, which is a well known method in quantum
control Mirrahimi & van Handel (2007). Moreover, we also
show that the proposed algorithm can generate a W-state,
which cannot be obtained by the algorithm of Mazzarella
et al. because the purity of the W-state is maximum among
all the quantum states. It is well known that the W-state
is one of the significant quantum entangled states and
utilized in wide areas such as quantum memory. This is an
important application of quantum consensus generation.

The similar research on the quantum consensus with
feedback control is in Mazzarella et al. (2015), where the
target state is restricted to an eigenstate and entangled
states are not realized. Ticozzi (2016) recently reports
the similar result of this paper in a deterministic way,
however it is unclear whether its assumed deterministic
operation can be realized by a feedback strategy which
essentially depends on the probabilistic observation output
by projective measurements.

This paper is organized as follows. In Section 2, we
introduce some mathematical preliminaries and define
the problem setting. In Section 3, we show the main
results of this paper and prove them. In Section 4, we
show numerical examples to confirm the efficiency of the
proposed algorithm. Finally, we conclude this paper in
Section 5.

Note that we omit many of the proofs for lemmas in this
paper from the page limitation.

2. FORMULATION
2.1 Conwvergence of Stochastic System

Let {2 neoyuny C C™ be a sequence of random variables.
Then, we introduce definitions of convergence as follows:

Definition 1. A sequence {z,} is said to converge to Z in
probability if lim P{|z, — Z| > ¢} = 0 for any ¢ > 0.
n—oo

Definition 2. A sequence {x,} is said to converge to &
with probability one (w.p.1) if P{tlim Tp =7} =1.
—00

It is known that convergence w.p.1 is stronger than con-
vergence in probability.

In this paper, we deal with a quantum control system
which makes a quantum state converge to a target state
in the above probabilistic sense. In order to show such
convergence, we employ the following stochastic Lyapunov
stability theorem.

Definition 3. A set C is called an invariant set if any initial
state of a dynamical system belonging to C never leaves C.
Proposition 1. (Kushner (1971)) Let {2y }neoyuny C C™
be a state of some dynamical system and a Markov process.

Assume that there exist bounded non-negative functions
V(z) and k(x) which satisfy

E{V(zn)ltn-1} = V(en1) = —k(zn-1) (1)
for all n € N. Then, k(z,) — 0 (n — o) for almost all the
paths. In addition, let M = {z € C™ | k(z) = 0}, and let
M be the largest invariant set of M, then ,, converges to
M in probability.

In some cases, convergence in probability implies conver-
gence w.p.1.

2.2 Quantum State and Quantum Consensus State

In this paper, we deal with a multipartite quantum system
composed of N isomorphic subsystems, labeled with in-
dices i = 1,2,..., N, with associated Hilbert space H :=
HixHa X xHpy, with dim(H;) = D for all i and D is an
integer satisfying D > 2. Let {|d;)}4,e0,1,..,0—1} be a set
of basis vectors of H;, then the basis vectors of HY are rep-
resented by {[d1)®[d2)®- - -®|dn) }vi,d,e(0,1,...,0-1} - Here-
after, we abbreviate |d1) ® |d2) ®- - - ®|dn) to |dida - - - dn).
In addition, we regard H; as CP and the basis vector |d;)
as (00 --- 0100 --- 0)7, i.e., the d; +1-th element is one
and the others are zero, where T is a transpose operator.

Remark 1. Our main results are obtained in the case of
D = 2, while some of lemmas are also true in the general
case. So, we specify the condition D = 2 only if necessary
in the following.

Define B(n) as a set of matrices with dimension n X n.
Then a quantum state on H' is represented by a density
matrix in

D(DN) = {peB(D")| p=p' = 0,tr(p) =1},  (2)
where T is the complex conjugate transpose operator, = 0
means that the matrix is semi-positive definite, and tr(+) is
an trace operator. A density matrix completely represents
a probability distribution of a quantum system.

In particular, if the rank of a density matrix is one, the
quantum state is called a pure state, while it is called a
mixed state if the rank is larger than one. A pure state p
is completely expressed by a state vector ¥ as p = il
which is an element of ®'(DN) := {1 € CP™| ||y = 1},

where || - || is 2-norm.

In this paper, we deal with a networked quantum sys-
tem and consider to realize a quantum consensus state,
called symmetric state consensus (SSC) introduced by
Mazzarella et al. (2015) as follows:

Definition 4. (Mazzarella et al. (2015)) Let = be a per-
mutation of integers 1,2,..., N, and let U, € B(DY)
be a permutation matrix satisfying Ur(z1 @ 22 ® --- ®
IN) = Tr(1) ® Tr(2) @ -+ @ Ty for all {z,})_, C CP.
Then, a quantum state p € D(DY) is called in symmetric
state consensus (SSC) if U, pUl = p holds with any 7.

We also use the notation SSC to represent the set of all
the quantum states in symmetric state consensus.

2.3 Network Structure and Quasi-local Operation

Mazzarella et al. (2015) introduced a consensus algorithm
to realize SSC, however Kamon & Ohki (2013) proved that

it loses purity
tr(p?). (3)

Motivated by this fact, in the following of this section,
we introduce a networked quantum system composed of
several quantum subsystems with a hybrid type (Kamon
& Ohki (2013, 2014)) of a quantum consensus algorithm
(Mazzarella et al. (2015)) and feedback control with obser-
vations, that is, distributed quasi-local measurements and
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