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Abstract: This work studies the state estimation problem of a networked linear system where a sensor
and an estimator are connected via a lossy network. If the measurement loss is known to the estimator,
the minimum variance estimate is easily computed by the intermittent Kalman filter (IKF). However,
this does not hold for the case of unknown measurement losses, and we have to address the non-
Gaussianity/non-linearity of the networked system. By exploiting the measurement loss process and
the IKF, we design three recursive suboptimal filters for state estimation, i.e., BKF-I, BKF-II and RBPF.
The BKF-I is based on the MAP estimator of the loss process and the BKF-II is derived by an estimate of
the conditional loss probability. The RBPF is an effective sequential importance sampling algorithm by
marginalizing out the loss process. A target tracking example is included to illustrate their effectiveness
and shows the tradeoff between computation complexity and estimation accuracy of the proposed filters.
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1. INTRODUCTION

The research on the state estimation with stochastic measure-
ment losses bears a vast body of literature, see e.g. Wu et al.
(2014); You et al. (2015) and references therein. However, most
of the existing works assume that the measurement loss process
is known to the estimator and focus on the stability of the
intermittent Kalman filter (IKF), which is originally proposed
in Sinopoli et al. (2004) as the minimum variance estimate. For
instance, Sinopoli et al. (2004) shows the existence of a critical
measurement loss probability beyond which the IKF may be
unstable, otherwise always convergent. In You et al. (2011), this
critical value for certain types of systems are explicitly obtained
under the Markovian measurement losses. In real applications,
the estimator may not able to discern whether the sensor mea-
surement is lost during the transmission in the noisy channel
as the received data can be pure noise or the noise-corrupted
sensor measurement. Thus, it is of importance to study the state
estimation problem under unknown sensor measurement losses.

Clearly, the lack of the measurement loss information results in
a non-Gaussian/non-linear networked system where the IKF is
no longer applicable. While there are some generic estimation
methods for non-linear/non-Gaussian systems (Van Der Merwe
et al., 2000), e.g., extended KF, unscented KF and particle
filter (PF), they do not particularly explore the feature of the
current problem. To this end, we model the measurement loss
process by a binary sequence {γk}, i.e., γk = 1 means that
the sensor measurement is received and γk = 0 indicates the
loss of the sensor measurement. Our objective is to design
recursive suboptimal filters to address these issues. Motivated
by the optimality of the IKF, a natural idea is that we can first
estimate γk under the maximum posterior criterion, based on
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which a Bayesian Kalman filter I (BKF-I) is derived. Clearly,
it is easy to understand the intuition and to implement this
algorithm. In addition, we derive a Bayesian Kalman filter II
(BKF-II) by estimating the conditional loss probability, which
is a compromise between the standard Kalman filter and the
IKF. Both algorithms reduce to the IKF if the measurement loss
process {γk} is known to the estimator.

Another method to address the non-gaussianity/non-linearity
lies in the use of particles to approximate the conditional den-
sity. However, the amount of computations required for the
PF in high-dimensional state space is extremely large. To in-
crease the sampling efficiency, one can marginalize out some
of the states and use standard algorithms such as the Kalman
filter to estimate them. Then, the PF is applied to estimate
the rest of states, which is called Rao-Blackwellised particle
Filter (RBPF). The implementation and comparison between
standard PF and this method are well documented in Doucet
et al. (2000); Van Der Merwe et al. (2000); Gustafsson et al.
(2002). In this work, we adopt this idea and use the PF to
estimate the conditional distribution of the measurement loss
process {γk}, which is binary valued and requires only a few
number of particles to approximate its distribution. Then, the
state of the networked system is estimated by the IKF. Finally,
a target tracking example is included to illustrate the effective-
ness of the BKF-I, BKF-II and the RBPF. It is interesting that
there exists a tradeoff between computation complexity and
estimation performance of the proposed filters.

The rest of this paper is organized as follows. In Section 2, we
formulate the estimation problem. In Section 3, we design the
BKF-I and the BKF-II based on the Bayes’ theorem and the
Kalman filter. In Section 4, we derive the RBPF to deal with
the networked estimation problem. Simulation is performed
in Sections 5 to compare the performance of the above three
filters. Finally, we draw the conclusions in Section 6.
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2. PROBLEM FORMULATION

Consider a discrete-time linear system where the measurements
are transmitted to a remote estimator via a noisy channel:

xk+1 = Axk + wk

yk = γk · Cxk + vk

where xk ∈ Rn and yk ∈ Rm are the vector states and
measurements. wk ∈ Rn and vk ∈ Rm are independent white
Gaussian noises with zero means and covariance matrices Q ≥
0 and R ≥ 0, respectively. γk is a binary random variable and
represents the sensor measurement loss process. In particular,
γk = 1 indicates the sensor measurement is contained in arrival
data yk while γk = 0 means that the estimator only receive
pure noise. Moreover, the system (A,Q,C) is stabilizable and
detectable. The initial state x0 is a random Gaussian vector with
mean x̄0 and covariance matrix Σ0 > 0.

Different from Sinopoli et al. (2004), the binary process {γk} in
the new scenario is unknown to the estimator, which renders the
IKF inapplicable. However, it is still very helpful in designing
an effective filter in the current situation. To elaborate it, define
Γk = {γ0, ..., γk} and Yk = {y0, ..., yk}, and the conditional
minimum variance estimate and error covariance matrices are
given by
x̂k|k−1 = E[xk|Yk−1,Γk−1]

x̂k|k = E[xk|Yk,Γk]

Σk|k−1 = E[(xk − x̂k|k−1)(xk − x̂k|k−1)
T|Yk−1,Γk−1]

Σk|k = E[(xk − x̂k|k)(xk − x̂k|k)
T|Yk,Γk]

ŷk|k−1 = E[yk|Yk−1,Γk−1].

(1)

Then, the measurement update of the IKF in Sinopoli et al.
(2004) is given by

x̂k|k = x̂k|k−1 + γkKk(yk − Cx̂k|k−1)

Σk|k = Σk|k−1 − γkKkCΣk|k−1
(2)

and the time update is the same as the KF, i.e.,
x̂k+1|k = Ax̂k|k

Σk+1|k = AΣk|kA
T +Q,

(3)

where the Kalman gain Kk = Σk|k−1C
T(CΣk|k−1C

T+R)−1

and x̂0|−1 = x̄0,Σ0|−1 = Σ0.

In this work, we consider a more general and realistic situation
where γk is unknown to the estimator. Then, xk conditioned
on Yk is not Gaussian, which is significantly different from the
IKF. Finding an effective minimum variance filter for this net-
worked system is very difficult. Furthermore, such an optimal
filter is expected to be too complex in real-time applications. To
derive recursive estimate with unknown measurement losses,
we propose three recursive suboptimal filters in the sequel.

3. BAYESIAN KALMAN FILTERS

3.1 Bayesian Kalman Filter I

We design a non-linear filter called Bayesian Kalman Filter
I (BKF-I) to recursively compute the state estimate of the
networked linear system with unknown measurement losses.
To this end, an intuitive idea is that we first estimate the
measurement losses Γk, based on which the IKF (2) is then
applied to compute the state estimate. Since γk takes only
binary values, it is natural to adopt the maximum a posteriori

probability (MAP) estimator, i.e., the MAP estimator of Γk is
given as follows:

Γ̂k = argmaxΓk
p(Γk|Yk)

where Γ̂k = {γ̂0, ..., γ̂k}. Then, substitute Γ̂k into (2), we
obtain the BKF-I. Thus, the remaining problem reduces to the
estimation of Γk.

Moreover, it follows from the Bayes’ formulas that
p(Γk|Yk) = p(γk,Γk−1|Yk)

=
p(γk,Γk−1, yk|Yk−1)p(Yk−1)

p(Yk)
.

To recursively compute it, we notice that
p(γk,Γk−1, yk|Yk−1)

= p(yk|γk,Γk−1, Yk−1)p(γk,Γk−1|Yk−1)

= p(yk|γk,Γk−1, Yk−1)p(γk|Γk−1, Yk−1)p(Γk−1|Yk−1).

Combining the above, it is clear that
p(Γk|Yk) = p(yk|Yk−1)×
p(yk|γk,Γk−1, Yk−1)p(γk|Γk−1, Yk−1)p(Γk−1|Yk−1).

(4)

To compute p(Γk|Yk), we thus have to consider all possible
values of Yk and Γk, which grow unboundedly. Unless that γk is
an independent process, it is generically impossible to estimate
Γk recursively even if we know p(Γk−1|Yk−1). Clearly, in the
application problems like positioning and target tracking, it is
preferable to device recursive algorithms. Thus, we consider to
approximately compute p(Γk|Yk).

A natural idea is to use Γ̂k−1 rather than all possible values of
Γk−1 to estimate γk. By substituting Γk−1 with Γ̂k−1, it follows
from (4) that

p(Γk|Yk) ≈ p(γk, Γ̂k−1|Yk)

∝ p(yk|γk, Γ̂k−1, Yk−1)p(γk|Γ̂k−1, Yk−1)p(Γ̂k−1|Yk−1).

Since Γ̂k−1 is known, our objective becomes finding γk to
approximately maximize the posterior probability. As γk is a
binary variable, it follows that

γ̂k = argmaxγk
p(γk, Γ̂k−1|Yk)

=

{
1, p(γk = 1, Γ̂k−1|Yk) > p(γk = 0, Γ̂k−1|Yk)

0, otherwise

(5)

and
p(γk = 1, Γ̂k−1|Yk)

p(γk = 0, Γ̂k−1|Yk)
=

p(yk|γk = 1, Γ̂k−1, Yk−1)p(γk = 1|Γ̂k−1, Yk−1)

p(yk|γk = 0, Γ̂k−1, Yk−1)p(γk = 0|Γ̂k−1, Yk−1)
.

(6)

In addition, we denote the probability density function of the
Gaussian distribution with mean µ and covariance matrix σ2

by N(µ, σ2). Once Γk is known, it follows from the IKF that

p(yk|γk, Yk−1, Γ̂k−1)

=

{
N(Cx̂k|k−1, CΣk|k−1C

T +R), γk = 1

N(0, R), γk = 0

where x̂k|k−1 and Σk|k−1 are computed by (2) with Γk−1 being
replaced by Γ̂k−1. With the prior probability distribution of γk,
we are able to compute p(γk|Yk−1, Γ̂k−1). Two common cases
are illustrated below.
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