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Abstract: A robust control feedback strategy is developed to solve the stabilization problem of con-
strained systems with uncertainties and output perturbations. The states are assumed to be constrained
inside a given polytope and the perturbations bounded. The control law is developed using an extended
version of the attractive ellipsoid method (AEM) approach, and a barrier Lyapunov function (BLF); this
is a function whose value goes to infinity whenever its arguments approach to the boundary of a given
set. The control parameters are obtained through the solution of some optimization problems related
to the approximation of the constraints set and the characterization of a minimal ultimate bounded set
for the system trajectories. The implementability of the resulting algorithm is supported by a numerical
example and by the comparison with the regular AEM based on a quadratic Lyapunov function.

Keywords: Robust Control, Constrained Systems, Lyapunov Methods, Barrier Lyapunov Function

1. INTRODUCTION

It is well known that real dynamical systems are affected by
noises and that their mathematical models rarely represent
accurately, without any kind of uncertainty, actual phenomena.
Also, many applications and practical systems are subjected to
constraints in the form of physical stoppages, saturation, and
safety specifications [Liu and Michel (1994); Sun et al. (1998)]
that limit the values of the system states variables. For these
reasons, the design of robust control laws ensuring that the
closed-loop system solutions do not violate or leave a given
set of constraints, even in presence of noisy measurements
and system uncertainties, has been of relevance [Kothare et al.
(1996); Xu et al. (2015)].

Among the most known results and approaches on the area
related to the study and minimization of the effects of perturba-
tions and uncertainties we can consider sliding-mode control,
[Shtessel et al. (2014)] which only works mainly for matched
perturbations; H∞ Control [Orlov and Aguilar (2014)], which
usually asks for a vanishing condition on the perturbations;
and neural networks [Haykin (2009)], which implementability
can be difficult. Another well-known approach is the attrac-
tive ellipsoid method (AEM), which can deal with unmatched
and non-vanishing perturbations, and usually the synthesis of
its parameters can be obtained through a linear minimization
problem facilitating its implementability.

The characterization of uncertain dynamics by ellipsoidal sets
was firstly introduced by the works of [Schweppe (1968)] and
[Bertsekas and Rhodes (1971)]. Then, the application of el-
lipsoids as estimations of sets guaranteed to contain a signif-
icant variable was further developed in [Kurzhanskii (1977);
Chernousko (1994); Polyak et al. (2004)]. The concept of the
asymptotically attractive (invariant) ellipsoid as used in this
paper was formalized in [Usoro et al. (1981); Polyak and Top-

unov (2008)] for linear systems and later extended to nonlinear
systems in [Poznyak et al. (2011); Mera et al. (2009)] and
[Poznyak et al. (2014)].

The AEM [Gonzalez-Garcia et al. (2009)] is based on the
Lyapunov analysis, so it is natural to use other results and
methods also based on this analysis to obtain additional features
for the closed-loop system, for example using the implicit
Lyapunov function method [Polyakov et al. (2014)] to obtain
finite time convergence to an ellipsoidal set [Mera et al. (2016)].
With that idea in mind, we decided to use the barrier Lyapunov
function (BLF) approach together with the AEM to handle
perturbed and constrained systems.

We can name some well-known existing design methods to
handle constraints, such as model predictive control [Mayne
et al. (2000)], reference governors [Bemporad (1998)], the use
of invariant sets [Liu and Michel (1994)], the zeroing Lyapunov
function approach [Wieland and Allgöwer (2007)] and the BLF
approach [Ngo et al. (2005)]. This last approach consists in
using a function whose limit goes to infinity as the system
solutions approach to the boundary of a given set, to design the
control input. The BLF approach has been widely used with the
aid of backstepping, to design control strategies for constrained
nonlinear systems [Tee et al. (2009)], tracking of trajectories
[Niu and Zhao (2013)], and to implement robust stabilization
for applications with constraints [Sane and Bernstein (2002);
Ngo et al. (2005)].

Contrasting with the regular approach of using a BLF to design
the high-gains inputs directly using the backstepping method,
in this paper we use a linear feedback derived from a BLF
to estimate and characterize an invariant set for the closed-
loop system such that selecting any initial condition in it,
it is assured that the system solutions for any t ≥ 0 do not
violate the given constraints. Then, using the AEM we estimate
a minimal (in some sense) ultimate bounded region for the
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solutions contained in the invariant set. Using this approach,
it is possible to consider constraints on all the states as well as
constraints only in some of them.

The structure of this paper is the following. The system descrip-
tion and the formal problem statement are presented in section
2. The main concepts and definitions for the AEM and BLF
are introduced in section 3. The main result, a robust linear
feedback control strategy, is presented in section 4. Finally,
section 6 contains the concluding remarks.

2. PROBLEM STATEMENT

Consider the system

ẋ(t) = Ax(t)+Bu(t)+ω(t,x(t)),

y(t) = x(t)+ ξ (t), ∀t ≥ 0, (1)

with A ∈ R
n×n, and B ∈ R

n, such that (A,B) is controllable in
Kalman sense, whose solutions are constrained in R

n inside a
polytope P := {x : aT

i x ≤ 1, i = 1, . . . ,k}, where ai ∈ R
n is a

set of given vectors, x ∈ R
n is the state vector, u ∈ R is the

control input, y∈R
n is the measurable output, ω :R×R

n →R
n

describes exogenous vanishing disturbances and uncertainties
(e.g. uncertain nonlinearities of the system), such that for the
symmetric matrices Qω ,Qx ∈ R

n×n the next inequality (i.e
vanishing condition) is fulfilled

ωT (t)Qω ω(t)≤ xT (t)Qxx(t), ∀t ≥ 0, (2)

and ξ ∈R
n is an unknown but bounded and locally measurable

perturbation, which is bounded for the symmetric matrix Qξ ∈

R
n×n as

ξ T (t)Qξ ξ (t)≤ 1, ∀t ≥ 0. (3)

The objective of this paper is to design a robust feedback
control strategy for system (1), such that the closed loop system
solutions remain inside the constraints set for all t ≥ 0, and
additionally converge asymptotically to a minimal size (in a
certain sense) ellipsoid contained in it, despite having noisy
measurements and uncertainties. A BLF and the AEM are used
to device the control strategy and obtain the corresponding
design parameters.

3. PRELIMINARIES

Considering the system of the form

ẋ(t) = f (x(t),ξ (t)) , ∀t ≥ 0, x(0) = x0, ξ (0) = ξ0; (4)

where x(t) ∈ R
n is the state vector, ξ (t) ∈ R

n is an unknown
but bounded perturbation

�ξ (t)� ≤ l0, ∀t ≥ 0, l0 ∈ R+,

and f : Rn ×R
n →R

n is a nonlinear continuous function. Also,
consider that the states are constrained in R

n by the polytope

P := {x : aT
i x ≤ 1, i = 1, . . . ,k}, (5)

where ai ∈ R
n are given vectors, and assume that the ellipsoid

Ex :=
�

x ∈ R
n : xT P̃x ≤ 1

�

, P̃ ∈ R
n×n

, P̃ = P̃T
> 0. (6)

contained in P is an invariant set of (4). Additionally, we
consider the notation, for any θ ∈ R

n

�θ�Ex
:= inf

η∈Ex

�θ −η�,

as the distance from a point θ to a set Ex.

The idea behind the BLF approach is to use a function which
limit value goes to infinity whenever its arguments approach

the boundary of some set as a Lyapunov function to analyze the
system stability.

Definition 1. (Barrier Lyapunov Function). Let the set D ⊂ R
n

be an open set with the boundary ∂D , assume that there exists
an invariant set for (4) contained in D and let V : D → R+ be a
continuous function in R

n. V is a BLF if it is positive definite,
continuously differentiable in D ,

lim
x→∂D−

V (x)→+∞,

and V (x)≤ b, ∀t ≥ 0 for some b ∈R+ for any x(0) ∈ D .

If V̇ ≤ 0 and x(0) ∈ D it is clear that b =V (x(0)), and that any
future trajectory is bounded inside D . However, it is desirable
for many applications that the trajectories not only remain
inside a given set but converge to a small (in a given sense)
neighborhood of the origin. To characterize this minimal region
formally we present the definition from [Poznyak et al. (2014)]
of the Attractive Ellipsoid.

Definition 2. (Asymptotically Attractive Ellipsoid). The set Ex,
is an asymptotically attractive ellipsoid for the system (4) if
�x(t,x0)�Ex

→ 0, as t → ∞, for any x0 ∈ R
n.

Considering the concepts presented in this section, the idea
developed in the next section is to design a control input
that ensures that the closed-loop system trajectories starting
in the invariant set D converge asymptotically to a “minimal”
attractive ellipsoid Ex ⊂ D .

4. CONTROL DESIGN

In order to reduce the complexity of the stability analysis and
the control design, the constraints set (5) can be approximated
by an ellipsoidal set completely contained in it. It is not difficult
to see that there exists a family of ellipsoids

R := {x : xT Rx ≤ 1}, (7)

parametrized by a positive definite matrix R ∈ R
n×n, contained

in P if

aT
i R−1ai ≤ 1, ∀ ai. (8)

Remark 1. For the stability analysis we can chose the origin of
the system (4), the center of the ellipsoid R and the barycenter
of the polytope P as the exact same point without any lose
of generality. However, the inequalities (8) are also valid if
the origin is required to be included in the polytope but to be
different from its barycenter.

Let us consider the following BLF candidate

V (x) = log

�

1

1− xT Rx

�

, (9)

where log(·) is the natural logarithmic function. For any x(0) ∈
R

n, note that V (x)→+∞ as x tends to the boundary of R from
the inside, and if V̇ ≤ 0 then R is the set D from definition 1.

Theorem 1. Let γ,β ∈R+, ai ∈R
n
, i= 1,2, . . . ,k, a set of given

vectors that define a polytope P in R
n, the matrices A and B

defined as in (1), the matrices

W1 :=













AX1 +X1AT +BY

+Y T BT + γX2 +βX1

X1AT +Y T BT

+X1 −X2
BY In×n

AX1 +BY +X1 −X2 −2X2 BY In×n

Y T BT Y T BT −γX1 0

In×n In×n 0 −γQω













,

W2 :=

�

βX1 γX1

γX1 γQ−1
x

�

,
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