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Abstract: We propose a controller architecture for soft-landing control with quantized input.
The objective of the soft-landing problem is to achieve precise positioning of a moving object
at a target position, while ensuring the velocity decreases as the target is approached. In this
paper, we formulate the soft-landing problem as a constrained control problem. Our approach
combines traditional convex model predictive control with a rounding rule that quantizes the
input. The rounding rule is designed to minimize the error between the requested and quantized
inputs. A robust control invariant set is used to ensure that the rounding errors do not lead to
constraint violations. We demonstrate our approach for a transportation system case study.
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1. INTRODUCTION

Many control applications in the automotive, aerospace,
manufacturing, and transportation fields require the pre-
cise positioning of a moving object at a desired location
while ensuring the the velocity of the object decreases as
the target is approached. The resulting soft-landing (also
called soft-contact) avoids damage and reduces wear. One
example of soft-landing is the control of valves in camless
engines, which requires the high-speed closing of a valve
in its seating while avoiding rough impacts that reduce
component operating life (see Hoffmann et al. (2003)). An-
other example is docking of spacecraft which requires the
docking spacecraft to make soft-contact to avoid the space-
craft ricocheting or suffering damage (see Weiss et al.
(2012)). Soft-landing is also important for rider comfort
during the automatic stopping of vehicles (see Bu and Tan
(2007)).

The soft-landing problem can be formulated as a con-
strained control problem where constraints are placed on
the object velocity relative to its position so that the object
slows as it approaches the target position. Hence the soft-
landing problem can be solved using constrained control
techniques. An early approach to the soft-landing problem
was based on reference governors (see Kolmanovsky and
Gilbert (2001)). This approach can guarantee constraint
satisfaction but has limited performance since reference
governors can only manipulate the reference of a linearly
pre-compensated system. More recently, model predictive
control (MPC) has been used to solve the soft-landing
problem (see Di Cairano et al. (2014)). In Di Cairano et al.
(2007) soft-landing MPC was applied to soft-landing for
valves in camless engines. In Di Cairano et al. (2012) and
Weiss et al. (2012) soft-landing MPC was applied to soft-
landing for space-craft docking.

In this paper, we consider the soft-landing problem when
the input is restricted to a finite set. Model predictive
control has been applied to system with finite input in the

literature. Aguilera and Quevedo (2011) studied the sta-
bilization of systems with a finite number of inputs using
model predictive control. Corona et al. (2006) focused on
the optimality of model predictive control for finite input
system. In the soft-landing problem, our main concern
is with guaranteeing constraint satisfaction rather than
optimality or stability. Picasso et al. (2002) presented a
method for computing control invariant sets for linear sys-
tems with finite input. For numerical simplicity, we adopt
the rounding rule approach from Kirches (2011). Our
approach combines a convex model predictive controller
which guarantees robust state constraint satisfaction and
a rounding rule that ensures the input lies in the finite set.
Our rounding rule is designed using Voronoi partitions.
This approach has been previously used in Bullo and
Liberzon (2006). The convex MPC and rounding rule are
designed jointly to ensure robust constraint satisfaction.

This paper is organized as follows. In Section 2 we formally
define the dynamics, constraints, and control objectives
for the soft-landing problem. In Section 3 we describe
our control algorithm for solving the soft-landing problem.
We pay particular attention to the issue of ensuring our
controller is robust to model uncertainty and rounding
errors. In Section 4 we demonstrate our control algorithm
on a transportation system case study.

2. SOFT-LANDING PROBLEM

In this section we define the dynamics, constraints, and
control objectives of the soft-landing problem.

2.1 Soft-Landing Dynamics

We consider an inertial object moving in a one-dimensional
space described by the dynamics

ẋm(t) =

[
0 1

0 − b
m

]

︸ ︷︷ ︸
Ām

xm(t) +

[
0
1
m

]

︸︷︷︸
B̄m

qf (t) (1)
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where the state xm(t) = [y(t), ẏ(t)]T ∈ R2 of the systems is
the position y(t) and velocity ẏ(t) of the inertial object, m
is the mass of the object, b is the viscous friction coefficient,
and qf (t) ∈ R1 is the controlled force on the object.

The controlled force qf (t) is the output of a linear filter
that captures the dynamics of the actuator. The filter is
described by the state-space model

ẋq(t) = Āqxq(t) + B̄qq(t) (2a)

qf (t) = C̄qxq(t) + D̄qq(t) (2b)

where xq ∈ Rnq is the state of the input filter and q(t) ∈
Rm is the input command. The soft-landing problem
assumes specific dynamics and constraints for the inertial
subsystem, but the input dynamics can be arbitrary and
are unconstrained. The soft-landing problem can also
include a disturbance force d. In addition the controlled
input force qf (t) can depend on the state xm(t) of the
inertia systems. However, for simplicity, we do not consider
these cases in this paper.

The state of the composite system x(t) = [xm(t), xq(t)] is
the state of the inertial system xm(t) and input filter xq(t).
In discrete-time, the dynamics of the composite system are
modeled by

[
xm(k + 1)
xq(k + 1)

]
=

[
Âm B̂mĈq

0 Âq

]

︸ ︷︷ ︸
A

[
xm(k)
xq(k)

]
+

[
B̂mD̂q

B̂q

]

︸ ︷︷ ︸
B

q(k) (3)

where (Âm, B̂m) and (Âq, B̂q, Ĉq, D̂q) are the discrete-
time transformations of (Ām, B̄m) and (Āq, B̄q, C̄q, D̄q)
respectively. We use the short-hand x(k) = x(tk) and
q(k) = q(tk) to denote the state and input, respectively, at
time tk = t0+k∆t where k ∈ N and ∆t is the discrete-time
sample period.

2.2 Soft-Landing Constraints

In this section we describe the state and input constraints
for the soft-landing problem. The state constraints only
apply to the state xm(t) of the inertial system.

The objective of the soft-landing problem is to bring the
inertial object to a stop in a neighborhood of the origin,
called the target set

T =

{[
xm,1

xm,2

]
:
xmin ≤ xm,1 ≤ xmax

xm,2 = 0

}
⊆ R2

where xmin < 0 < xmax are the maximum deviations of
the position xm,1 from the origin. We only require that
the state xm(t) reaches the target set, not that it remains
in the target set. This is motivated by several practical
applications in which, upon entering the target set, the
dynamics change in such a way to keep the state in the
target set. For instance static friction is used to hold
valves in their seating, clamps are used hold spacecraft
in place during docking, and parking brakes are used to
keep elevators at floor level.

We do not want the state xm(k) of the inertial systems
to approach the target set T with a velocity that is too
fast or too slow. Therefore we introduce the “soft-landing”
cone constraint to control the approach velocity

S =

{[
xm,1

xm,2

]
:
xm,2 + γmax(xm,1 − xmax) ≤ 0
xm,2 + γmin(xm,1 − xmin) ≥ 0

}
(4)

where γmax, γmin ∈ R+ with γmin < γmax are spatial de-
celeration coefficients. This constraint bounds the velocity
xm,2(k) = ẏ(tk) of the inertial system as a function of
position xm,1(k) = y(tk) to ensures the velocity decreases
smoothly as the inertial system approaches the target
set T ⊆ R2. The state constraint set is given by the
unbounded polytope

X = S × Rnq ⊂ Rn (5)

where n = 2 + nq is the dimension of the composite
system (3). In the soft-landing problem there are no
constraints on the state of the input xq ∈ Rnq filter.

The nonlinearity of this problem is due to the quantization
of the input q(k) which is drawn from a finite set Q ⊂ Rm

where |Q| < ∞. We assume that the convex-hull conv(Q)
of the input set Q contains the origin in its interior
0 ∈ conv(Q).

2.3 Soft-Landing Objectives

The objective of the soft-landing problem is to generate an
input trajectory that drives the inertial object to the target
set while satisfying state constraints. The soft-landing
problem is formally stated below.

Problem 1. (Soft-landing). Select a feasible input trajec-
tory q(k) ∈ Q for k ∈ N such that the state trajectory
x(k) = [xm(k), xq(k)]

T resulting from the dynamics (3)
satisfies the state constraints x(k) ∈ X for all k ∈ N and
converges x(k) → T to the target set T i.e. there exists
f ∈ N such that x(f) ∈ T .

If the final time f = ∞ is infinite, then we mean that the
state asymptotically converges the target set xm(k) → T .

In Di Cairano et al. (2014) it was shown that a feasible
state trajectory x(k) ∈ X that satisfies the dynamics (3)
will necessarily converge to the target set. Thus Problem 1
can be solved by simply finding a feasible input trajectory
q(k) ∈ Q that produces a persistently feasible state
trajectory x(k) ∈ X . In Di Cairano et al. (2014), Problem 1
was solved using convex model predictive control with
a robust control invariant set that guaranteed persistent
feasibility. In this paper we extend this result to the case
where the input is quantized.

3. SOFT-LANDING CONTROL DESIGN

In this section we describe our controller for solving the
Soft-Landing Problem 1. Our controller consists of two
parts connected in series: a convex model predictive con-
troller and a rounding rule. The convex model predictive
controller is used to ensure robust state constraint satis-
faction. The rounding rule is used to ensure satisfaction of
the input constraint. The rounding rule will be described
in Section 3.2 and the model predictive controller will be
described in Section 3.3.

3.1 Model Uncertainty

The mass m and the viscous friction coefficient b of
the inertial system are uncertain and thus the matrices
Ām and B̄m are uncertain. In addition, the dynamics
matrices (Āq, B̄q, C̄q, D̄q) of the input dynamics (2) may
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