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Abstract: We present a model predictive control approach for uncertain, continuous-time,
constrained, nonlinear systems with noisy, discrete time measurements. The proposed discrete-
time controller combines a state estimator with a suitably robustified predictive control law. For
this purpose the continuous-time dynamics is discretized and rigorous bounds on the truncation
errors as well as the noise are derived. We combine these bounds with ideas from tube based
predictive control to derive conditions to guarantee constraint satisfaction, robust recursive
feasibility and robust stability. An example illustrates the results.

1. INTRODUCTION

Model predictive control (MPC) is frequently used to
control nonlinear systems with constraints, see (Lucia
et al., 2016; Mayne, 2014; Rawlings and Mayne, 2009).
MPC uses at each time instant the first part of the solution
of an optimal control problem as feedback. Unfortunately,
for real systems usually the model of the continuous-time
system is uncertain, the state needs to be reconstructed
from noisy measurements and the digital control hardware
works in discrete-time. These challenges need to be taken
into account to avoid infeasibility, constraint violation and
instability of the closed loop system.

This work considers the robust, output feedback con-
trol of continuous-time, uncertain, nonlinear systems by
a discrete-time controller. Similar to the state feedback
case (investigated in (Kögel and Findeisen, 2015a)): we
first discretize the system using a numerical integration
scheme for which the truncation error and the effect of
the process noise can be explicitly bounded. Therefore,
we compute a set of ’disturbances’ such that the uncer-
tain continuous-time behavior is given by the nominal
discrete-time system plus an additive ’disturbance’ from
this set, i.e. the continuous-time behavior is included in the
discrete-time behavior. In a second step, a discrete-time
predictive output feedback controller is designed, which is
robust with respect to the process and measurement noise
as well as the discretization error.

By now many works address robustness/robust design of
MPC, see e.g. (Rawlings and Mayne, 2009; Streif et al.,
2014) for an overview. Inherent robustness of output
feedback MPC is investigated in e.g. (Imsland et al.,
2003). Different approaches for robust, output-feedback
MPC based on robust optimization (see e.g. (Copp and
Hespanha, 2014)), or tube MPC (see e.g. (Kögel and
Findeisen, 2015a,b,c; Mayne et al., 2006, 2009)), passivity
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plus dissipativity (Yu et al., 2013) or Roset et al. (2008)
input-to-state stability have been proposed.

We use ideas similar to those of (Kögel and Findeisen,
2015a,b,c; Mayne et al., 2006, 2009) to guarantee robust
constraint satisfaction and robust stability of the discrete-
time system, which hold due to the employed, consist
discretization also for the real closed loop system.

The remainder is structured as follows. Section 2 states the
problem. Section 3 considers the consistent discretization
of the dynamics. Section 4 deals with state estimation. Sec-
tion 5 investigates robustness properties of the closed loop
system. Section 6 illustrates the results by an example.

Notation: For a compact set M, �M�∞ = max
x∈M

�x�∞.

For two sets A ⊕ B/A ⊖ B denotes the Minkowski
sum/difference, see e.g. (Rawlings and Mayne, 2009). For
a vector x, x[i] is the ith component of x. ⋆ denotes optimal
values of variables/functions.

2. PROBLEM FORMULATION

This section outlines the considered class of systems and
sketches the proposed output feedback consisting of a
robust model predictive control law and a state estimator.

2.1 System class

Considered are nonlinear, continuous-time systems af-
fected by bounded, additive disturbances of the form

ẋ(t) =f(x(t), u(t), w(t)), (1a)

=Ax(t) +Bu(t) + w(t) + g(x(t), u(t)),

w(t) ∈ W, (1b)

where x is the system state, u the applied input, w an
unknown, piece-wise continuous disturbance, also called
process noise, and t ≥ 0 is the time. Disturbances are
drawn from the set W ⊂ R

n, which contains the origin and
is assumed to be convex and compact. We assume that the
nonlinearity g(x(t), u(t)) is locally Lipschitz continuous in
x(t) and u(t) and satisfies g(0, 0) = 0, i.e. the origin is a
steady state for the nondisturbed system.
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case (investigated in (Kögel and Findeisen, 2015a)): we
first discretize the system using a numerical integration
scheme for which the truncation error and the effect of
the process noise can be explicitly bounded. Therefore,
we compute a set of ’disturbances’ such that the uncer-
tain continuous-time behavior is given by the nominal
discrete-time system plus an additive ’disturbance’ from
this set, i.e. the continuous-time behavior is included in the
discrete-time behavior. In a second step, a discrete-time
predictive output feedback controller is designed, which is
robust with respect to the process and measurement noise
as well as the discretization error.

By now many works address robustness/robust design of
MPC, see e.g. (Rawlings and Mayne, 2009; Streif et al.,
2014) for an overview. Inherent robustness of output
feedback MPC is investigated in e.g. (Imsland et al.,
2003). Different approaches for robust, output-feedback
MPC based on robust optimization (see e.g. (Copp and
Hespanha, 2014)), or tube MPC (see e.g. (Kögel and
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The input u(t) and system state x(t) need to satisfy

x(t) ∈ X, u(t) ∈ U, t ≥ 0, (2)

where the sets U ⊂ R
p, X ⊂ R

n are assumed to be com-
pact, convex and contain a neighborhood of the origins.

The system state x is not directly available and needs to be
estimated from noisy measurements y. The measurements
y are taken at the sampling instants tk = kT , 1 where
T > 0 is the sampling time. The measurements satisfy

yk = Cxk + vk, vk ∈ V, (3)

where vk denotes the measurement noise, which is re-
stricted to the compact, convex set V ⊂ R

q. Moreover, an
estimate x̂0 of the initial state x(0) and a compact, convex
set E0 restricting the initial estimation error e0 = x(0)−x̂0

to e0 ∈ E0 are available.

The objective is to design an output feedback controller
for the system (1)-(3) such that the closed loop system is
robustly stable and satisfies the constraints (2) for every
admissible noise realization. This controller is evaluated
periodically at the sampling instants tk, when new mea-
surements are available. For simplicity we assume that the
input u(t) is held constant between the sampling instants:

u(t) = uk, for t ∈ [tk, tk+1). (4)

2.2 Proposed approach

The basic idea is to first discretize the continuous-time
dynamics and to bound the effects of the truncation and
the process noise. Second, based on these bounds a robust
predictive output feedback controller is designed for the
discrete-time approximation, such that the overall closed
loop system is robust with respect to the process and
measurement noise as well as the truncation error. In the
remainder of this section, we sketch the approximate dis-
cretization and the proposed control framework combining
a state estimator with a robust, predictive control law.

Approximate discretization with guarantees
Using the input parametrization (4) the state xk+1 is given
by the state xk at the current sampling time, the applied
input uk and the realization of the disturbance w between
tk and tk+1. In the nominal case (w(t) ≡ 0) this relation
is a map from xk, uk to xk+1 given by the solution of a
differential equation:

F(x, u) = ξ(T ), where ξ̇(t) = f(ξ(t), uk, 0), ξ(0) = xk.
(5)

Similarly, we define the set of reachable states xk+1 from
the state xk with the input uk in the uncertain case:

Definition 1. (Reachable set)
The reachable set H(x, u) for (1), (4) is given by the states
reachable in T time units from x using the dynamics (1),
a constant input u and any admissible realization of w(t).

Clearly, H(x, u) is given by all ξ(T ) satisfying

ξ̇(t) = f(ξ(t), u, w(t)), w(t) ∈ W, t ∈ [0, T ], ξ(0) = x.

Unfortunately, one can determine an explicit expression for
the reachable set H(x, u) or just for the exact discretiza-
tion F(x, u) for nonlinear systems only in rare special
cases, see e.g. (Khalil, 2002; Rihm, 1994). To still provide

1 In the following we write xk to denote x(tk).

guarantees the idea is to approximately discretize (1), (4)
and bound the arising truncation error as well as the
influence of the process noise w(t) similar as in (Kögel
and Findeisen, 2015a).

The key idea used in this work is to replace (1), (4) by

xk+1 = F (xk, uk) + dk, dk ∈ D(xk, uk), (6)

where the map F(x, u) is replaced by an approximation
F (x, u). In this work we limit our attention to the Euler
method with a single step of length T for a time interval:

F (x, u) =x+ Tf(x, u, 0). (7)

The set D(xk, uk) is chosen such that consistency is guar-
anteed:

H(x, u) ⊆ {F (x, u)}⊕ D(x, u), ∀x ∈ X, ∀u ∈ U
︸ ︷︷ ︸

=H(x,u)

. (8)

We refer to the following section for more details.

State estimator
The state estimator obtains an estimate x̂k of xk. We focus
on estimators with the following structure

x̂k+1 = F (x̂k, uk) + L(x̂k, yk), (9)

where the correction term L(x̂k, yk) improves/stabilizes
the estimation error. Details are given in Section 4.

Predictive output feedback scheme
The proposed robust MPC scheme utilizes the state es-
timate x̂k and the approximate discretization to obtain
input and state sequences 2

xk =
(
x′
k|k . . . x′

k+N |k

)′
, uk =

(
u′
k|k . . . u′

k+N−1|k

)′
,

defined over a horizon N . xk, uk need to be consistent
with the estimate x̂k, and the (approximate) dynamics:

xi+1+k|k =F (xi+k|k, ui+k|k), i = 0, . . . , N − 1, (10a)

xk|k =x̂k. (10b)

Moreover, the sequences xk and uk need to satisfy con-
straints of the form (as defined below)

uk ∈ Ũ, xk ∈ X̃, (11)

and need to minimize the nominal performance index

J(xk,uk) =

N+k−1∑

j=k

ℓ(xj|k, uj|k) + P (xk+N |k),

given by a terminal cost P (x) and a stage cost ℓ(x, u).

To sum up: the control input is determined at tk by the
solution of the optimization problem O(x̂k)

O(x̂k) : min
xk,uk

J(xk,uk) s.t. (10), (11). (12a)

This problem maps the state estimate x̂k into a (pos-
sible non-unique) optimal state trajectory x⋆

k and input
sequence u⋆

k. The first optimized input is the feedback

uk = u⋆
k|k. (12b)

In Section 5 we present conditions such that the considered
output feedback combining (9) and (12) guarantees robust
stability and robust constraint satisfaction despite the fact
that the uncertainties are not explicitly considered within
(12), by choosing the constraints (11) appropriately.

2 i+ k|k denotes a prediction i steps into the future.
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