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Abstract: This work proposes a Model Predictive Control (MPC) approach without terminal
constraints for switched nonlinear systems subject to time-dependent and a priori unknown
switching signals. Under a controllability assumption, it is shown that the controlled system is
asymptotically stable if the switching signal fulfills a certain average dwell time condition. The
results are applied to a continuous stirred-tank reactor with two different modes of operation.
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1. INTRODUCTION

Model Predictive Control (MPC) is a control technique, in
which an open-loop optimal control problem is repeatedly
solved. The main advantages of MPC include the possibil-
ity to explicitly consider input and state constraints and to
apply it to general nonlinear systems. For computational
reasons, a finite prediction horizon is used in the optimal
control problem, which requires additional arguments to
guarantee stability. A common procedure is to modify
the optimal control problem by introducing a terminal
cost and terminal region constraints, see, e.g., Chen and
Allgéwer (1998) or Mayne et al. (2000). On the contrary,
in MPC without terminal constraints, the finite horizon
optimal control problem remains unchanged and stability
is, e.g., achieved by verifying certain controllability as-
sumptions, see Griine (2009) or Reble and Allgéwer (2012).

This work considers MPC without terminal constraints for
the class of switched nonlinear systems. In this class of
systems, the dynamics are determined by several subsys-
tems and by a switching signal that indicates the active
subsystem. Switched systems are of relevance in many
applications, such as for switched control strategies, in
reductions of nonlinear models to piecewise affine ones, or
under instantly changing system characteristics or oper-
ating conditions, see, e.g., (Rantzer and Johansson, 2000;
Morse, 1995; Liberzon, 2003). For general time-dependent,
a priori unknown switching signals considered in this work,
it is well known that, even if a switched system consists of
stable subsystems only, it may be destabilized by certain
switching signals (Liberzon, 2003). Hence, to guarantee
stability, it may be necessary to restrict the set of allowed
switching signals. Typical restrictions are formulated in
terms of dwell time or average dwell time conditions,
see Morse (1996) or Hespanha and Morse (1999). For
switched nonlinear systems, these conditions are derived
from multiple Lyapunov functions fulfilling a compatibility
assumption (Liberzon, 2003).

In this work, we make use of the average dwell time frame-
work to design a stabilizing MPC scheme for switched
nonlinear systems. A stabilizing MPC scheme for this class
of systems has also been developed in Mhaskar et al.
(2005), where the switching signal is, however, required
to be known a priori. In Miiller et al. (2012), the authors
discussed a setup that is closely related to this work by
presenting an average dwell time condition for MPC with
terminal constraints. In order to verify that the switched
system is asymptotically stabilized by the MPC scheme,
additional assumptions particularly for the switched setup
are needed in Miiller et al. (2012). As presented in this
paper, the advantage of MPC without terminal constraints
is that similar stability results for switching signals sub-
ject to a certain average dwell time condition are ob-
tained nearly without additional assumptions. Precisely,
this work shows that the usual assumptions to prove that
a single subsystem is stable under MPC without terminal
constraints only needs minor adjustments to get asymp-
totic stability in the switched case.

This work is structured as follows. In Section 2, the setup
and our notation are presented. Section 3 introduces and
analyzes a switched MPC algorithm. In Section 3.1, the
main stability result for this algorithm is formulated in
terms of compatibility and decrease conditions for the op-
timal value functions of the subsystems. In Section 3.3, we
show how these conditions can be satisfied, using, among
others, MPC stability results from the non-switched case,
which are reviewed in Section 3.2. In Section 4, our results
are applied to a continuous stirred-tank reactor. Finally,
Section 5 gives a brief conclusion.

2. PRELIMINARIES AND SETUP

In this work, we consider a family of subsystems

@(t) = fp(z(t),u(t)), >0,
z(0) = o,
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where z(t) € R™ and u(t) € U, with U C R™ compact,
are the state and the input signal at time ¢, respectively.
Moreover, p € P is the subsystem index from a finite index
set P. For each subsystem, we assume that the vector field
fp is locally Lipschitz and that the origin is an equilibrium
point of the undriven system, i.e. f,(0,0) = 0. In the
following, we consider input signals u € Cpy([0,0),U),
where Cpy([0,00),U) denotes the set of all piecewise
continuous functions which map from [0, o) to U.

In the setup considered here, an a priori unknown switch-
ing signal o : [0,00) — P determines which subsystem
p € P is currently active. The switching signal is assumed
to be piecewise constant and right-continuous such that
the switches occur at discrete points 73, with 79 = 0 and
Tk < Tp+1. Hence, the switched system is given by
.’t(t) = fa(t) (x(t),u(t)), t>0, (1)
ZE(O) = 2o,
i.e. a solution z(-) follows the vector field f, () on each
interval [7;,7;+1) and it is continuous in any switch 7;. In
the following, we consider the class of switching signals
exhibiting a certain average dwell time, as introduced
by Hespanha and Morse (1999).

Definition 1. A switching signal o has average dwell time
7o > 0 if there exists a number Ny > 0 such that

t1 —to
Ny (t1,t2) < Ny +

a
holds for all t; > to > 0, where N, (t1,t2) denotes the
number of switches in the interval (g, t1].

The goal is to control the switched system (1) with an
MPC algorithm that does not make use of stabilizing ter-
minal constraints. The following finite horizon open-loop
optimal control problem is used for such an MPC scheme
in the non-switched context. Hence, it is formulated for a
single subsystem p.

Problem 2. For the initial state xy and the subsystem
index p, solve the optimization problem

seciny v TP )
with
T
Trafao,m) = [ Ly(a(o).a(t)dt,
0

subject to

f(t) _fp(f(t)vﬂ(t))v te [O,T]»

7(0) = 29

In Problem 2, the notation @(-) denotes the predicted
input sequence and Z(-) is the corresponding predicted
state trajectory starting at the initial condition zg. The
stage cost function L, : R® x U — [0,00) is chosen
to be continuous and to satisfy L,(0,0) = 0. Since
Problem 2 does not include terminal constraints, any
piecewise continuous input signal @ defined on [0,7] is
feasible if it satisfies the input constraints u(t) € U and
if it ensures that the predicted state trajectory T exists
on the whole prediction interval [0,T]. Consequently the
feasible set of Problem 2 can be rather large compared to
MPC schemes with terminal constraints.

In the following, it is assumed that a minimizer u%. ,(+; o)
with Jrp (w0, up ,(520)) = mingec,, (0,7),0) JT.p(T0, U)

exists for all initial states g € R™ and all subsystems
p € P. This allows to define the optimal value function
J7., : R" = [0,00) mapping an initial condition to its re-
spective minimal value Jr p(zo, ur (3 0)). Moreover, the
corresponding state trajectory is denoted by a7 (o).

Remark 3. In the presented setup, no state constraints
are considered. Hence, initial and recursive feasibility
follow immediately. On the other hand, in case that state
constraints of the form z € X C R” should be considered,
modifications might be needed to guarantee recursive
feasibility. Boccia et al. (2014) and Chapter 8 of Griine and
Pannek (2011) give detailed discussions about this aspect
in the context of MPC without terminal constraints.

3. MODEL PREDICTIVE CONTROL FOR
SWITCHED SYSTEMS

Problem 2 considers a certain subsystem with index p
as the vector field f, gives the dynamics and as the
weighting is done by the stage cost function L, which is
chosen appropriately for subsystem p. Nevertheless, the
minimizing input signals of Problem 2 are also useful
in the switched case. Since this work considers a priori
unknown switching signals, a prediction is to be based on
the currently active subsystem. To this end, it is assumed
that all switches are detected instantly. This results in
the following switched MPC algorithm, see Miiller et al.
(2012).

Algorithm 1. Initialize the algorithm with ¢ = £k = 0 and
to = 0. For each t; execute the following steps.

(1) Measure the state z(¢;) and determine p; := o(¢;).
(2) Solve Problem 2 for zq := x(t;) and p := p;.

) Set UMpc(t) = ’U,*Tmi(t — tl,fﬂ(ti)) for t € [tiati+1),
where t;11 := min{t; + 0,7,41} defines the next
sampling instant, i.e. apply the first part of the
optimal control input uf. , (-;z(t;)).

(4) Leti:=di+ 1. i t; = 741, let k:=k + 1.

Since the future behavior of the switching signal is un-
known, the sampling instants ¢; are defined online. At
these sampling instants, Problem 2 is solved anew in Step 3
either because the nominal sampling time J has passed
or because a switch occurs. Although different sampling
times have to be considered in view of unknown switching
signals, § always denotes the fix nominal sampling time in
the following. As indicated by Step 3, Algorithm 1 defines
the input signal uypc € Cpw ([0, 00),U) and consequently
the resulting trajectory is denoted by Zypc.

3.1 Stability

For Algorithm 1, the following main result about asymp-
totic stability can be formulated.

Theorem 4. Suppose there exist A € (0,00) and pu,C €
[1,00) such that for all p,q € P, all x5 € R", and all
d € [0, ¢] the estimates

J;",p(z;,p(a;xO)) < eiA(sJ;:,p(xOL (2)
I p (@7 p(d; o)) < O (20), (3)

and
J1p(20) < pdr 4 (20) (4)
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