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Abstract: The numerical simulation of geophysical problems invariably leads to using a mesh that is 

coarser than what is required to resolve all of the important physical processes being described by the set 

of governing partial differential equations. This coarse mesh will therefore miss important physical 

phenomena that the observational instruments used for data assimilation will see. The performance of a 

data assimilation algorithm can be improved by accounting for these missing physical processes. We 

briefly review recent work describing how to properly use Bayes’ rule when the model is attempting to 

predict a truncated version of a much higher resolution state-vector and the observations that are being 

assimilated are observing the elements of this high-resolution state-vector. Then, we go on to describe a 

practical ensemble (Monte Carlo) data assimilation system that makes use of this theory in a simple 

problem which has the property that data assimilation at low-resolution works very poorly unless the 

aforementioned theory is properly accounted for. 
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1. INTRODUCTION 

In geophysical applications we are rarely if ever able to 

simulate the problem at hand at a resolution for which all 

important scales of motion are fully resolved. Almost 

universally we must truncate the continuous variables of 

interest to a discrete set and then concatenate those variables 

into a state-vector that does not fully describe the problem. 

Typically, we model this state-vector with a discretized 

partial differential equation (PDE) that coarsely models the 

entire physical system. The result of this coarsening of the 

simulation of the system is that the numerical model does not 

simulate the actual variables of interest but simulates some 

(unknown) function of the variables of interest.  For example, 

a coarse spatial mesh used to solve the typical hyperbolic 

PDEs of geophysical fluid dynamics delivers a solution that 

is smoother than a fine spatial mesh, and therefore the 

solution for each element of the coarse mesh model is some 

function of many elements of the fine mesh model. This has 

particular consequences on the data assimilation (the process 

by which prior simulations are combined with observations to 

produce a state estimate) that has not been accounted for 

previously in a rigorous Bayesian framework. Observations 

of the actual physical system observe state variables on the 

high-resolution mesh that are not actually simulated by our 

coarse mesh forecast model, at least not directly.  The 

questions to be examined in this manuscript include: what 

does Bayes’ rule mean in this context?  What is the best way 

to make use of these kinds of observations?  And, what data 

assimilation system should be used in this situation?  We will 

review some recent research towards a solution to this 

problem and illustrate its application in an example problem. 

2. THEORY AND GAUSSIAN EXAMPLE 

In this section we review the general theory for reduced-

resolution data assimilation presented in Hodyss and Nichols 

(2015).  Our review will only cover the aspects necessary to 

build a data assimilation system that uses a reduced state-

vector.  Here, we will build a Gaussian covariance model and 

from it deduce the correct state-estimation procedure for the 

case where the observations are viewing a state with a higher 

dimension than the available forecast model is capable of 

simulating. 

2.1  Problem Setup 

A simple way to construct a Gaussian problem that is 

amenable to analysis is through the use of a discrete Fourier 

series representation.  To this end we assert a Gaussian 

covariance model for the high-resolution states of the form 

 
H H

= +x x Zη      (2.1) 

where 
H

x is an N-vector, Z is the square-root of the true 

covariance matrix, 

 
T

H
=P ZZ      (2.2) 

and η  is an N-vector of random numbers drawn from N(0,I).  

We construct (2.2) using a sinusoidal basis in which the 

columns of EH (N × N) contain the sinusoids such that 

 
T

H H H
=P E ΓE      (2.3) 
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1. INTRODUCTION 

In geophysical applications we are rarely if ever able to 

simulate the problem at hand at a resolution for which all 

important scales of motion are fully resolved. Almost 

universally we must truncate the continuous variables of 

interest to a discrete set and then concatenate those variables 

into a state-vector that does not fully describe the problem. 

Typically, we model this state-vector with a discretized 

partial differential equation (PDE) that coarsely models the 

entire physical system. The result of this coarsening of the 

simulation of the system is that the numerical model does not 

simulate the actual variables of interest but simulates some 

(unknown) function of the variables of interest.  For example, 

a coarse spatial mesh used to solve the typical hyperbolic 

PDEs of geophysical fluid dynamics delivers a solution that 

is smoother than a fine spatial mesh, and therefore the 

solution for each element of the coarse mesh model is some 

function of many elements of the fine mesh model. This has 

particular consequences on the data assimilation (the process 

by which prior simulations are combined with observations to 

produce a state estimate) that has not been accounted for 

previously in a rigorous Bayesian framework. Observations 

of the actual physical system observe state variables on the 

high-resolution mesh that are not actually simulated by our 

coarse mesh forecast model, at least not directly.  The 

questions to be examined in this manuscript include: what 

does Bayes’ rule mean in this context?  What is the best way 

to make use of these kinds of observations?  And, what data 

assimilation system should be used in this situation?  We will 

review some recent research towards a solution to this 

problem and illustrate its application in an example problem. 

2. THEORY AND GAUSSIAN EXAMPLE 

In this section we review the general theory for reduced-

resolution data assimilation presented in Hodyss and Nichols 

(2015).  Our review will only cover the aspects necessary to 

build a data assimilation system that uses a reduced state-

vector.  Here, we will build a Gaussian covariance model and 

from it deduce the correct state-estimation procedure for the 

case where the observations are viewing a state with a higher 

dimension than the available forecast model is capable of 

simulating. 

2.1  Problem Setup 

A simple way to construct a Gaussian problem that is 

amenable to analysis is through the use of a discrete Fourier 

series representation.  To this end we assert a Gaussian 

covariance model for the high-resolution states of the form 

 
H H

= +x x Zη      (2.1) 

where 
H

x is an N-vector, Z is the square-root of the true 

covariance matrix, 

 
T

H
=P ZZ      (2.2) 

and η  is an N-vector of random numbers drawn from N(0,I).  

We construct (2.2) using a sinusoidal basis in which the 

columns of EH (N × N) contain the sinusoids such that 
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Γ is a diagonal matrix whose i
th

 element of the diagonal 

determines the weight given to a particular basis function.    

We connect the high-resolution (N-vector) states to the low-

resolution (M-vector) states  

 
L H
=x Sx      (2.4) 

through a “smoother” S (M  × N) that operates as: 

 
1 2 T

L H
=   S E D T 0 E                  (2.5) 

where D (M × M) is a diagonal matrix, 
L

E  (M  × M) is the 

low-resolution basis whose columns are also the sinusoids, 

T (M × M) is a diagonal matrix with the value M N along 

the diagonal. As alluded to in the introduction, the equation 

(2.4) is meant to describe the relationship between the field 

variables (e.g. winds, temperature, etc.) described by our 

coarse spatial mesh model and the actual fine spatial mesh 

reality from which the observations are taken.   

If we assume that the columns of 
L

E  are simply the 

subsampled columns of EH then the interpretation of (2.5) 

becomes straightforward. The matrix D represents the 

climatological “model error” on the resolved scales and 

would be equal to the identity matrix if the forecast model’s 

climate at the resolved scales was identical to the true 

model’s climate at those same scales.  The matrix implied by 

the bracket in (2.5) performs a truncation of the high-

resolution basis to the M-dimensional subspace while the 

matrix T assures that the Fourier coefficients calculated from 

the high-resolution basis are reweighted consistently with 

respect to the low-resolution basis. 

Equation (2.4) allows for the creation of the low-resolution 

states from the high-resolution states in (2.1).  This implies 

that the low-resolution error covariance matrix may be 

written as 

1 2 1 2
T

T T

L H L L
= =       P SP S E D T 0 Γ D T 0 E .        (2.6) 

Because Γ are the true, high-resolution eigenvalues, equation 

(2.6) shows that the forecast (low-resolution) covariance 

matrix would be correct up to its M eigenvalues if the 

climatological model error D could be removed.  The data 

assimilation method that we describe next will remove this 

climatological model error from the state estimate by 

accounting for the error from the truncated state-space. 

2.2  Data Assimilation 

It is shown in Hodyss and Nichols (2015) that the best linear 

unbiased estimate for the problem setup here is 

 [ ]
L L L

a

L = + −x x G v v     (2.7) 

where 

 
1

*T T

L L LH L L L L

−

= + +      G P H P H P H R ,  (2.8) 

 ( )T

LH H H L
= −P SP H H S ,    (2.9) 

 
* T T

L ins H H H L L L
= + −R R H P H H P H ,   (2.10) 

 
L L L
= −v y H x ,     (2.11) 

 
L H H L L
= −v H x H x .    (2.12) 

In (2.8) through (2.12),  y is a p-vector of observations, 
H

H is 

a p × N observation operator,  
H

x is the high-resolution prior 

mean, 
L

x is low-resolution prior mean, and 
ins

R  is the 

instrument observation covariance matrix whose diagonal 

contains the instrument error variances.    

3. METHODS AND APPLICATION 

In this section we will first describe a standard way by which 

one invokes a truncation of the state vector and then move on 

to an application of the theory of section 2.  We then describe 

an example problem where the truncation of the state vector 

leads to serious issues with the data assimilation.  Application 

of the two methods described in this section will reveal the 

impact of not accounting for the truncated state space in the 

data assimilation. 

3.1  A Contemporary Approach 

We will approach the problem here assuming ensemble 

methods (Monte Carlo) are available. We assume however 

that for computational reasons we cannot perform data 

assimilation at the resolution of the true high-resolution (N-

vector) state.  We will however assume that we can run an 

ensemble at this resolution, but then must perform our data 

assimilation at a reduced resolution of length M.  Using the 

low-resolution ensemble we may make the following state-

estimate at low-resolution 

  [ ]c

L L c L L
= + −x x G v v    (3.1) 

where 

 
1

T T

c L L L L L c

−

= +  G P H H P H R    (3.2) 

 
c ins c
= +R R R      (3.3) 

 
L L L
= −v y H x      (3.4) 

and 
L

H is a p × M observation operator.  The low-resolution 

prior covariance matrix,
L

P , and the prior mean,
L

x , are both 

calculated from the low-resolution ensemble using sample 

statistics. Here, the matrix 
c

R is simply a diagonal matrix and 

along that diagonal the elements are tuned to produce the 
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