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Abstract: We investigate Gaussian filtering for data assimilation in numerical weather
prediction (NWP). Data assimilation is the process of combining prior forecasts and observations
to produce a system estimate. The prevailing data assimilation method in operational NWP
centers is variational data assimilation. This method involves solving a cost function over a
time window forming a maximum likelihood estimate. This method, however, requires the use
of linearized models which in practice are difficult to produce and maintain. As an alternative
we propose Gaussian smoothing for derivative-free, nonlinear data assimilation. Gaussian filters
and their corresponding smoothers use numerical integration to evaluate the recursive Bayesian
formulas for optimal filtering under Gaussian assumptions. This numerical integration typically
requires many model evaluations making conventional Gaussian filtering/smoothing impractical
for use in NWP. We will present a reduced order method for forming a Rauch-Tung-Striebel
(RTS) type smoother. To do so we review the Bayesian filtering and smoothing equations and
discuss an efficient numerical method for evaluating them. We will then discuss a numerical
example using the Korteweg-de Vries equation to compare our technique to the standard
variational approach.
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1. INTRODUCTION

Atmospheric data assimilation is used in numerical weather
prediction (NWP) to create initial conditions for models
to forecast future weather conditions. Data assimilation
combines background information from climatology, or a
previous forecast, and observations optimally to estimate
the system state. In NWP applications this estimation
problem is ill-posed: in a six hour time window 107 ob-
servations may be used to estimate 108 state variables
used in models. These observations come from a variety
of sources for example satellites, radiosondes, aircraft, and
land surface instrumentation. The operational NWP mod-
els are often in the form of software packages, nonlinear,
and expensive to run. The current Navy global environ-
mental model (NAVGEM) (Hogan et al. (2014)) uses a
Gaussian grid with 1, 080 × 540 points and 50 vertical
levels which corresponds to about a resolution of 37 km.
NAVGEM includes physical parameterizations of nonlin-
ear processes such as subgrid-scale moist processes and
radiation. The physical parameterizations in NWP models
can be stochastic and discontinuous and are difficult to
linearize.

Currently the Navy’s operational data assimilation system
is a four-dimensional variational (4D-Var) system (Xu
et al. (2005)). This is a maximum likelihood estimate
of the state and is of the form of the minimization
of a cost function. It assumes the evolving dynamical

system is quasi-linear and requires the computation of
the model Jacobian or tangent linear model. Creating
and maintaining an accurate analytical tangent linear
model for NWP use is difficult and expensive. For models
with strong nonlinearity tangent linear models are only
valid for a short time window. An added complication
of this method is it not amenable to parallel computer
architectures. This has the implication that while NWP
models are running at progressively higher resolutions data
assimilation is performed at much lower resolutions.

Gaussian filters provide a nonlinear state estimate without
the use of linearized models and are highly parallelizable.
They solve the nonlinear filtering problem by Gaussian
density approximations, that is, we assume the filtering
densities are well approximated by Gaussian distributions
via moment matching. Using Bayes’ formula with respect
to the first two moments one can obtain the Gaussian
filter. A variety of quadratures, e.g. Gauss Hermite (Ito
and Xiong (2000)) and cubature (Wu et al. (2006)), are
then used to evaluate the Bayesian formulas. The extended
Kalman filter as well as the unscented Kalman filter may
be viewed as special cases of Gaussian filters (Särkkä
(2013)).

We develop a reduced order Gaussian smoother for data
assimilation in order to condition our filtering solution
on all measurements during our assimilation window. The
solution based from the smoother is then comparable to
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the solution from 4D-Var. For linear models with Gaussian
error 4D-Var is equivalent to the Kalman smoother (Li
and Navon (2001)). As with the Kalman smoother after
the forward Gaussian filter the smoother runs a backward
recursive correction over the forward filtering result. To
form the smoother we discuss the Bayesian smoothing
equations and then apply efficient quadrature to evaluate
the equations to form the filter/smoother combination.

We begin Section 2 by reviewing the optimal filtering
based on Bayes’ equation and discussing central differences
based quadrature. In Section 3 we discuss variational data
assimilation. We present a numerical example in Section
4 using Rossby waves. We conclude with a discussion of
the opportunities for Gaussian filtering and smoothing in
data assimilation.

2. GAUSSIAN SMOOTHING

We begin by reviewing the nonlinear estimation problem
using the Bayesian smoothing equations. Consider the
discrete system modeled by

x(k) = f(x(k − 1)) + w(k), x(0) = x0 (1)

where x0 has covariance P0 with the observation process
given by

y(k) = h(x(k)) + v(k)

where w(k) is the model error with covariance Q and v(k)
is the observation error with variance R. The nonlinear
filtering problem is to find the conditional expectation
E[x(k)|Yk] given the observations up to the current time
k, i.e., Yk = {y(j), 1 ≤ j ≤ k}. The nonlinear smoothing
problem is to findE[x(k)|YT ] given all the observation data
across a window including future observations, i.e., YT =
{y(j), 1 ≤ j ≤ T}. After the Gaussian filter performs a
forward filtering pass, the smoother recursively computes
corrections in a backward pass. The smoothing of the state
estimate will then be conditioned on all measurements.

We will discuss the nonlinear gaussian smoother in the
context of the Rauch-Tung-Striebel (RTS) smoother for
linear systems. That is, a forward-backward smoothing
over a fixed interval. Applying Bayes’ rule to the smoother
density p(xk, YT ) gives

p(xk, YT ) =

∫

Rn

p(xk, ξ|YT )dξ

=

∫

Rn

p(ξ|YT )p(xk|ξ, YT )dξ.

(2)

The state xk is independent of future measurements
yk+1, yk+2, yk+3, . . . etc making it Markovian and

p(xk|xk+1, YT ) = p(xk|xk+1, Yk). (3)

We may then apply (3) to (2) to arrive at

p(xk|YT ) =

∫

Rn

p(ξ|YT )p(xk|ξ, YT )dξ

= p(xk|Yk)

∫

Rn

p(ξ|YT )p(ξ|xk)

p(ξ|Yk)
dξ.

(4)

The forward filtering pass computes p(xk|Yk) and the
backward smoothing pass recursively computes the smooth-
ing density p(xk|YT ). While evaluating (4) exactly is not
practical we may approximate it using generalized frame-
work developed in Särkkä (2008) and Särkkä and Har-

tikainen (2010) based on assumed density filtering. The
joint Gaussian approximation is given by

p

((
xk

xk+1

)∣∣∣Yk

)
= N

((
xk|k

xk+1|k

)
,

(
Pk|k Pxk

PT
xk Pk+1|k

))
.

Then

xk+1|k =

∫

Rn

c1 · f(ξ)e−
1
2 (ξ−xk|k)

TP−1
k|k(ξ−xk|k)dξ

Pk+1|k = Q+

∫

Rn

c1 · (f(ξ)− xk+1|k)(f(ξ)− xk+1|k)
T

·e−
1
2 (ξ−xk|k)

TP−1
k|k(ξ−xk|k)dξ

where

c1 =
1√

(2π)ndet(Pk+1|k)
.

The cross-covariance Pxk is given by

Pxk =

∫

Rn

c2 · (ξ − xk+1|k)(f(ξ)− xk+1|k)
T

·e−
1
2 (ξ−xk+1|k)

TP−1
k+1|k(ξ−xk+1|k)dξ

where

c2 =
1√

(2π)ndet(Pk+1|k)
.

Then the Gaussian approximation of psk|k with mean xs
k is

given by
xs
k = xk|k +Gk(x

s
k+1 − xk+1|k) (5)

P s
k = Pk|k +Gk(P

s
k+1 − Pk+1|k)G

T
k (6)

where
Gk = PxkP

−1
k+1|k.

2.1 Gaussian filter

In order to compute p(xk|Yk) and p(xk+1|YT ) we form the
forward Gaussian filter assuming

pk−1|k−1 = N(xk−1|k−1, Pk−1|k−1).

Then the Gaussian approximation of pk|k−1 has mean
xk|k−1 with covariance Pk|k−1. The prediction step of the
filter is

xk|k−1 =

∫

Rn

c1·f(ξ)e−
1
2 (ξ−xk−1|k−1)

TP−1
k−1|k−1

(ξ−xk−1|k−1)dξ

and

Pk|k−1 = Q+

∫

Rn

c1 · (f(ξ)− xk|k−1)(f(ξ)− xk|k−1)
T

·e−
1
2 (ξ−xk−1|k−1)

TP−1
k−1|k−1

(ξ−xk−1|k−1)dξ

where

c1 =
1√

(2π)ndet(Pk−1|k−1)
.

We assume Ek|k−1[h(x(k))] may be approximated by a
Gaussian with mean z and covariance Pzz defined by

z =

∫

Rn

c2 · h(ξ)e−
1
2 (ξ−xk|k−1)

TP−1
k|k−1

(ξ−xk|k−1)dξ

and

Pzz =

∫

Rn

c2 · (h(ξ)− z)(h(ξ)− z)T

·e−
1
2 (ξ−xk|k−1)

TP−1
k|k−1

(ξ−xk|k−1)dt
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