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1. INTRODUCTION

Set-point regulation of nonlinear systems, e.g. robot ma-
nipulator control, is a fundamental and important problem
for control applications. Unlike standard regulation prob-
lems, an operating point is not a equilibrium point of open-
loop system; this implies system parameter uncertainties
directly cause an offset error.

To achieve offset-free set-point regulation, adaptive control
is one of the effective approach. This fact is well known in
the field of robot control (see, e.g. Craig (2005), Siciliano
et al. (2010)), and many adaptive controllers for robot
manipulators are proposed; Craig et. al. (1987), Slotine
and Li (1987), Sadegh and Horowitz (1990), Tomei (1991),
Berghuis et. al. (1993), and so on. Note that all of these
controllers have the same structure; the combinations of an
adaptive parameter compensation term and a stabilization
term. Thanks to the adaptive compensation term, the
effect of gravity is precisely canceled even if parameter
uncertainties exist.

For general input affine nonlinear systems, the above
construction of adaptive controllers could be extended by
employing control Lyapunov functions (CLFs). In the set-
point regulation problem, a CLF is also available as an
adaptive control Lyapunov function (ACLF) (see Krstić et
al. (1995), Satoh et al. (2009)). This implies both adaptive
compensating and stabilizing terms can be designed based
on the CLF.

As well-studied in the robot manipulator control, the
adaptive controllers are robust with respect to parameter
uncertainties. On the other hand, robustness with respect
to input uncertainties such as gain margins or sector
margins (Grad (1987), Sepulchre et al. (1997)) also
important in practice. In Satoh et al. (2009), the authors
showed that the CLF-based adaptive controllers have gain
margins if the stabilization term itself have gain margins.

However, robustness results with respect to more general
input uncertainties are not studied.

In this paper, we discuss robustness of the CLF-based
adaptive controllers with respect to a class of nonlinear
input uncertainties. In particular, we consider the mono-
tone nonlinearity (Arcak and Kokotović (2001), Fan and
Arcak (2003)) as the input uncertainties and discuss the
stability of the perturbed closed loop systems.

2. PRELIMINARIES

In this section, we introduce basic definitions of mathe-
matical terms and their fundamental properties.

Let us consider the following nonlinear system:

ẋ = f(x) + g(x)u (1)

where x ∈ R
n is the state and u ∈ R

m the control input.
We assume f : R

n → R
n and g : R

n → R
n×m are

continuous mappings and f(0) = 0.

Control Lyapunov function (CLF) for (1) is defined as
follows:

Definition 1. (control Lyapunov function). A C1 function
V : Rn → R is said to be a control Lyapunov function for
(1) if the following properties holds:

(A1) V is proper; that is, the set {x ∈ R
n|V (x) ≤ L} is

compact for every L > 0;
(A2) V is positive definite; that is, V (0) = 0 and V (x) >
0 for all x ∈ R

n\{0};
(A3) the following holds:

inf
u∈Rm

(LfV + LgV · u) < 0, ∀x ∈ R
n\{0}, (2)

where LfV and LgV are denote (∂V/∂x)f(x) and
(∂V/∂x)g(x), respectively.

In this paper, we discuss the robustness of state feedback
controllers with respect to input uncertainties. In nonlin-
ear control theory, the following sector margins and gain
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margins are used to evaluate the robustness (Grad (1987),
Sepulchre et al. (1997)):

Definition 2. (sector nonlinearity). A continuous mapping
φ : R → R is said to be a sector nonlinearity in [α, β],
where α, β ∈ R such that 0 < α < 1 < β, if the following
conditions hold:

φ(0) = 0,

αu2 ≤ uφ(u) ≤ βu2, ∀u ∈ R\{0}. (3)

Moreover, a mapping φ : R
m → R

m; (u1, . . . , um)T �→
(φ1(u1), . . . , φm(um))T is said to be a sector nonlinearity
in [α, β]m if each φi (i = 1, . . . ,m) is a sector nonlinearity
in [α, β].

Definition 3. (sector margin). Let k : R
n → R

m be a
given state feedback controller and φ : R

m → R
m any

sector nonlinearity in [α, β]m. Then, the controller u =
k(x) is said to have a sector margin [α, β]m if the origin of
the following closed loop system is asymptotically stable:

ẋ = f(x) + g(x)φ(k(x)). (4)

Gain margins are also defined as a special case of sector
margins:

Definition 4. (gain margin). The controller u = k(x) is
said to have a gain margin [α, β]m if the condition of
Definition 3 holds for any φ satisfying

φ(u) = Ku, ∀u ∈ R
m,

K = diag(κ1, . . . , κm), κi ∈ [α, β], ∀i ∈ {1, . . . ,m}. (5)

Moreover, such φ is called a gain uncertainty in [α, β]m.

Remark 1. Sector and gain margins contain the asymp-
totic stability of the original system (1). This follows from
the fact that φ(u) = u is both sector nonlinearity and a
gain uncertainty in [α, β]m.

3. GAIN MARGINS OF CLF-BASED ADAPTIVE
CONTROLLERS

In this paper, we consider the following perturbed system
of (1):

ẋ = f(x) + g(x)(u − θ), (6)

where θ ∈ R
m is a constant parameter.

The problem considered here is the asymptotic stabiliza-
tion of x = 0 of (6). As mentioned in section 5, this
problem is closely related to non-zero set-point regulation
of system (1).

To consider CLF-based controller design, we introduce the
following hypothesis:

Hypothesis 1. There exists a CLF V (x) for nominal system
(1) (i.e. system (6) with θ = 0).

Then it is natural to construct a stabilizing state feedback
for system (6) by

u = k(x) + θ, (7)

where k : Rn → R
m asymptotically stabilizes the origin

of (1) and guarantees the sector margin [α, β]m for some
α and β such that 0 < α < 1 < β. Note that Such k(x)
always exists under the Hypothesis 1. For example, we
can employ Sontag’s universal formula (Sontag (1989)) as
k(x).

The controller (7) clearly asymptotically stabilizes the
origin of (6). However, by this construction, the sector

margin of k(x) is lost. More precisely, controller (7) does
not guarantees any sector/gain margin for system (6)
despite k(x) guarantees the sector margin for (1).

To “recover” the robustness of k(x), we extend the con-
troller (7) to the following adaptive control form:

u = k(x) + θ̂, (8)

˙̂
θ = −ΓLgV

T , (9)

where θ̂ is a estimate of θ,
˙̂
θ its update law, and Γ :=

diag(γ1, . . . , γm), γi > 0, i ∈ {1, . . . ,m} a adaptive gain
matrix.

Remark 2. V is available for adaptive control design since
V is also a adaptive control Lyapunov function (ACLF)
for (6). For details on ACLF, refer to Krstić et al. (1995).

Remark 3. The controller (8)–(9) is available whether θ is
known or not.

Importantly, the controller (8)–(9) guarantees a gain mar-
gin for (6). The following theorem is the generalization of
Lemma 2 in Satoh et al. (2009).

Theorem 2. Let φ(u) = Ku be any gain uncertainty in
[α, β]m. Then the closed loop system

ẋ = f(x) + g(x)
[

K
(

k(x) + θ̂
)

− θ
]

˙̂
θ = −ΓLgV

T

(10)

is asymptotically stable at (x, θ̂) = (0, K−1θ).

Proof. Let θ2 := K−1θ. Consider the following Lyapunov
function Ṽ for (10):

Ṽ (x, θ̂ − θ2) := V (x) +
1

2
(θ̂ − θ2)

TKΓ−1(θ̂ − θ2). (11)

Then the time derivative of Ṽ is obtained as
˙̃V =

∂V

∂x

[

f(x) + g(x)
(

K(k(x) + θ̂)− θ
)]

+ (θ̂ − θ2)
TKΓ−1 ˙̂θ

=
∂V

∂x
(f(x) + g(x)Kk(x))

+ LgV K
(

θ̂ − θ2

)

− (θ̂ − θ2)
TKΓ−1

(

ΓLgV
T
)

=
∂V

∂x
(f(x) + g(x)Kk(x)) ≤ 0.

Note that the last inequality holds since k(x) guarantees

the gain margin. The convergence of x and θ̂ follows from
the LaSalle’s invariance principle (for more details, see the
proof of Theorem 5 in section 4).

This theorem provides that the controller (8)–(9) is robust
to gain uncertainties in [α, β]m. Is it possible to extend this
result to more general input uncertainties ? We tackle this
problem in the following section.

4. ROBUSTNESS WITH RESPECT TO MONOTONE
UNCERTAINTIES

4.1 Monotone Nonlinearities

In Theorem 2, the key of the proof is that any gain
uncertainty φ satisfies

φ(k(x) + θ̂) = φ(k(x)) + φ(θ̂). (12)
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