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Abstract: In this paper, a novel identification methodology is proposed to capture general
multivariate nonlinear relationships, with focus on the bounded-error approximation of model
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problem that is mathematically feasible as well as numerically tractable. The efficiency of the
proposed method for the derivation of low-complexity explicit model predictive controllers is
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1. INTRODUCTION

Model Predictive Control (MPC, see [Mayne et al.
(2000)]) is a widely used control method which involves
the solution at each sampling instant of a finite horizon
optimal control problem subject to the system dynamics
and input and state constraints. Nevertheless, the on-line
solution of an optimization problem is often time con-
suming and requires expensive computation. This makes
the real-time MPC implementation usually limited to pro-
cesses where the sampling time and hardware capability
are sufficient to support the computational needs.

To overcome the aforementioned implementation issues,
several approaches to explicit MPC (EMPC) have been
recently pursued, where the on-line computation would
simply be point location search and function evaluation.
An interesting survey on this topic can be found in [Alessio
and Bemporad (2009)]. In the context of linear systems,
the classical problem of obtaining EMPC controllers with
quadratic cost and linear constraints can be solved by
using parametric quadratic programming techniques (see,
for instance, [Bemporad et al. (2002)]). As for nonlin-
ear systems, deriving the true optimal nonlinear MPC
(NMPC) control law is generally not possible and hence
approximate approaches have to be followed. Following
this direction, several techniques have been devised such
as artificial neural networks [Pin et al. (2013)], set mem-
berships identification [Canale et al. (2009), Fagiano et
al. (2012)] and piecewise affine (or linear) approximators
[Johansen (2004), Grancharova and Johansen (2012),
Grancharova and Olaru (2014)]. Nevertheless, while piece-
wise affine approaches normally suffer from the ”curse of

⋆ This work was sponsored within the project CRYOGREEN, fi-
nanced by the French National Research Agency (ANR).

dimensionality”, standard nonlinear approximators offer
universal capabilities at the price of non-convex optimiza-
tion schemes. Hence, the investigation of EMPCs with
nonlinear piecewise representations is of interests.

In this paper, we introduce an extension of the identifica-
tion method recently proposed in [Alamir (2013)]. This
method is suitable for the component-wise approximation
of MPC control laws, i.e. each control input will be iden-
tified independently. The obtained approximate EMPC
is represented as piecewise nonlinear approximators, al-
lowing to reduce the number of regions with respect to
the piecewise affine approaches. Compared to the neural
networks approach, the methodology takes advantages of
efficient computation of constrained linear (or quadratic)
programming problems. Bounds on admissible errors are
also given in order to maintain the closed-loop perfor-
mance as well as to trade off complexity and approxima-
tion error.

This paper is organized as follows. In Section 2, the design
of a nonlinear piecewise approximator is presented. Sec-
tion 3 describes a heuristic procedure for approximating
general nonlinear functions as well as MPC control laws
based on the designed approximator. Simulation results
are reported in Section 4 before drawing the conclusions
in the final section.

Notation

• Ia:b := {a, a+ 1, . . . , b− 1, b}, a, b ∈ N, a < b;
• pi, i ∈ I1:n: components of a vector p ∈ R

n;
• card(S): the cardinality of the set S, i.e. the number
of elements of the set;

• N(P ): the neighborhood of a point, a set or a topo-
logical space P within an appropriate tolerance;

• ∂P : the boundary of a topological space P .
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2. DESIGN OF A NONLINEAR APPROXIMATOR

2.1 Problem statement and mathematical formulation

Consider the following nonlinear identification problem:
Problem 1. Given the data D = {(q(k), Z(k)}k∈I1:N

where Z ∈ H ⊆ R
nz is the regressor and q ∈ [q, q] ⊂ R is

the output. Find a map F : Rnz → R of the form:

F (Z) := Γ−1(LTZ); Γ(·) is strictly increasing (1)

such that the following approximation holds:

q ≈ F (Z) (2)

The structure (1) is a Wiener-like model with nonlinear
piecewise strictly monotonic static output mapping which
can be parametrized using a finite function basis:

Γ(q) =

nb
∑

j=1

[B(j)(ξ(q))]µj = B(ξ(q))µ; ξ(q) =
q − q

q − q
(3)

where the basis functions are given by:

{B(j)}j∈I1:nb
:= {1} ∪ {B

(i)
1 }i∈I2:nm

∪ {B
(i)
2 }i∈I1:nm

(4)

The number of functions is nb = 2nm while B
(i)
1 and B

(i)
2

are defined as:

B
(i)
1 (η) := (1 + αi)

η

1 + αiη
; B

(i)
2 (η) :=

η

1 + αi(1− η)
(5)

The coefficients αi are given by αi := eβ(i−1) − 1 for some
constant β > 0 (see [Alamir (2013)]).

Denote µ ∈ R
nb and L ∈ R

nz as the parameters of F (Z).
The total number of parameters is np = nb+nz. The basic
idea of the above formulation is to solve Problem 1 by
finding µ ∈ R

nb and L ∈ R
nz such that the approximation

B(ξ(q))µ ≈ LTZ holds. Hence, consider the following
linear program (LP) with a positive constant ǫ:

min
µ,L

max
(q,Z)∈D

|w(q, Z) · (B(q)µ− ZTL)|

s.t. [
dB

dξ
(ξ)]µ ≥ ǫ, ∀ξ ∈ [0, 1]

(6)

where the indicator w(q, Z): R×R
nz → R+ is introduced in

(6) to enforce specific precision depending on the problem.
We define this weight as a function of the learning data:

w(q, Z) =

{

ρi if (q, Z) ∈ W(i)

1 otherwise
(7)

where ρi are some positive constants and W(i) are disjoint
subspaces. This formulation obviously recalls the known
weighted norm approximation where ∞-norm is employed.
Alternative formulation, based on the L2-norm, can also
be adopted leading to a quadratic programming (QP)
problem.

The constraint expresses the fact that Γ has to be strictly
monotonic in order to guarantee the existence of the
inverse map Γ−1(·). Note that by defining a sufficiently
dense grid of ξ over the interval [0, 1], namely {ξi}i∈I1:nξ

,

this constraint can be transformed into a finite number of
linear inequalities.

Remark 1. The normalization constraint in the formulation
of [Alamir (2013)] has been removed as the imposed
constraint guarantees that µ �= 0, i.e. the trivial solution
(µ = 0, L = 0) is never admissible.

2.2 Preliminary analysis

For convenience, we denote pid = (nm, β, ǫ, {ξi}i∈I1:nξ
, w(·))

as identification parameters and model parameters as p =
[

µ
L

]

∈ R
np . Let the slack variable ζ be the minimizing

cost, the LP (6) is rewritten as follows

L(pid,D)(p, ζ) : min
p,ζ

ζ

s.t. A(pid,D) ·

[

p
ζ

]

≤ b(pid,D)
(8)

where A(pid,D) and b(pid,D) are easily derived.

The feasibility of L(pid,D)(p, ζ) is as follows:
Proposition 1. The LP L(pid,D)(·) is feasible.

Proof. According to the definition of the functional basis,

[dB
dξ

(ξ)] =

[

dB(j)

dξ
(ξi)

]

i∈I1:nξ
,j∈I1:nb

is an nξ × nb matrix

with the elements of the first column being zeros while the
remaining being positive. Hence, it is obvious that there
exists µ such that [dB

dξ
(ξ)]µ > 0. Thus, the feasibility of

L(pid,D)(·) is guaranteed with any ǫ > 0.

The identification residual can be characterized as follows:
Proposition 2. If (µ,L) is a feasible solution of the LP
L(pid,D)(·) with corresponding cost J , the identification
residual of any learning data point (q, Z) is such that:

|q − F (Z)| ≤
1

w(q, Z)
·
1

ǫ
· (q − q) · J (9)

Proof. For any (q, Z) ∈ D, the continuity of Γ(·) implies
the existence of q̂ = F (Z) such that B(ξ(q̂))µ = LTZ. One
clearly has

J ≥ w(q, Z)|B(ξ(q))µ− LTZ|

= w(q, Z)|B(ξ(q))µ−B(ξ(q̂))µ|

≥ min
ξ∈[0,1]

[

(
dB

dξ
(ξ)µ)

]

w(q, Z)|ξ(q̂)− ξ(q)|

≥ ǫw(q, Z)|ξ(q̂)− ξ(q)| = ǫw(q, Z)
|q̂ − q|

q − q

(10)

which is equivalent to (9).

Remark 2. Proposition 2 implies that the desired fit can
be obtained with a sufficiently small cost and appropriate
identification parameters. It is also possible to adjust
the relative fit between subsets of data through w(q, Z).
Nevertheless, the upper bound (9) on the identification
residual can be very conservative in some cases.

3. NONLINEAR PIECEWISE APPROXIMATIONS
AND MODEL PREDICTIVE CONTROL

3.1 Problem statement and proposed methodology

The lack of universal property of the proposed nonlinear
approximator (1) has been underlined in [Alamir (2013)].
In order to overcome this structural limitation, we consider
the following identification problem:
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