
IFAC-PapersOnLine 49-18 (2016) 284–289

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2016.10.178

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

On the Formation Rejoin Problem �

John Hauser ∗ Jacob Cook ∗

∗ Electrical, Computer & Energy Engineering
University of Colorado Boulder

{ john.hauser, jacob.cook } @ colorado.edu

Abstract: We consider the problem of a maneuvering vehicle performing a rejoin to close
formation with another maneuvering vehicle. The dynamics of relative position and velocity is
shown to be governed by a linear time varying dynamics. Using rotationally invariant potential
functions to exploit the symmetry present in the dynamics, we are able to construct Lyapunov
functions that, along with their time derivative, are independent of time allowing us to conclude,
in the case of linear feedback, exponential stability of the time varying closed loop system. The
situation with nonlinear feedback is somewhat more delicate, requiring the use of Matrosov’s
theorem to prove uniform global asymptotic stability. Performance of the approach is illustrated
by rejoining to an aggressively maneuvering flight leader using a saturating control law.
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1. INTRODUCTION

We are interested in the problem of a maneuvering vehi-
cle performing a rejoin to close formation with another
maneuevering vehicle. Our interest stems from the first
author’s experience flying jets in the US Air Force. With
appropriate training, one finds that keeping the desired
position within the formation may be accomplished using
only (visual) information providing relative position (ve-
locity and acceleration) in the frame of the flight leader,
even under conditions of rather aggressive maneuvering.
Naturally, it is important that the flight leader (“lead”)
maneuver within an appropriate class of maneuvers but,
as seen in airshows, formation keeping (as we used to say,
welded wing) can be reasonably achieved under full aer-
obatic maneuvering. Lead is typically highly skilled (and
experienced), capable of providing a very smooth platform
for the wingman (or wingmen) to follow. In order to be in
formation, one must bring the vehicles together, hence the
notion of a formation rejoin. This too is achieved largely
with (visual) reference to flight lead, that is, working in
some sort of local coordinates. The use of (curvilinear)
coordinate systems that are adapted to a task is well
known in path following and maneuver regulation, see, e.g.,
Samson (1995), Hauser and Hindman (1995), Saccon et al.
(2013).

These ideas are also motivated by situations where a ma-
neuvering entity is providing local navigational services to
a family of maneuvering vehicles. Consider, for instance,
a group of underwater vehicles working together with a
team of divers without access to often used navigation aids
(such as GPS) and without high speed communications.
Location services may then be provided by a constella-
tion of surface vehicles that maneuver in support of the
underwater mission (Abreu and Pascoal, 2015).

� Research supported in part by NSF CPS grant CNS-1446812.

In this paper, we set out to show that these well known (to
pilots) ideas can be explored mathematically and are, in a
sense, not so surprising when viewed in a natural setting.

2. EQNS OF MOTION IN FLIGHT LEAD FRAME

The position and orientation of the flight leader frame (at
time t ∈ R) is given by xd(t) ∈ R3 and Rd(t) ∈ SO(3). The
velocity and acceleration, ẋd(t) and ẍd(t), are bounded
for admissible lead trajectories. Furthermore, the angular
velocity ωd(t) satisfying

Ṙd(t) = Rd(t) ω̂d(t) (1)

is also bounded. Here, the hat operator takes a vector
ω ∈ R3 to the skew symmetric matrix

ω̂ =

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]

representing the cross product operator ω̂ v = ω × v.

Recall that the rotation matrix Rd(t) describing the ori-
entation of the flight lead frame maps local vectors (those
expressed in that frame) to the spatial frame, yspatial =
Rd(t) ylocal. Thus, the position of a maneuvering vehicle
can be expressed in the flight lead frame as

p = RT
d (t) [x− xd(t)]

since the inverse of a rotation matrix is its transpose. In
the same way, the velocity and acceleration vectors are
given by

v = RT
d (t) [ẋ− ẋd(t)]

a = RT
d (t) [ẍ− ẍd(t)]

in the flight lead frame. Using (1), we see that a vehicle
maneuvering in the flight leader frame is described by the
linear time-varying control system

ṗ = v − ω̂d(t) p

v̇ = a− ω̂d(t) v
(2)
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sense, not so surprising when viewed in a natural setting.

2. EQNS OF MOTION IN FLIGHT LEAD FRAME

The position and orientation of the flight leader frame (at
time t ∈ R) is given by xd(t) ∈ R3 and Rd(t) ∈ SO(3). The
velocity and acceleration, ẋd(t) and ẍd(t), are bounded
for admissible lead trajectories. Furthermore, the angular
velocity ωd(t) satisfying

Ṙd(t) = Rd(t) ω̂d(t) (1)

is also bounded. Here, the hat operator takes a vector
ω ∈ R3 to the skew symmetric matrix

ω̂ =

[
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]

representing the cross product operator ω̂ v = ω × v.

Recall that the rotation matrix Rd(t) describing the ori-
entation of the flight lead frame maps local vectors (those
expressed in that frame) to the spatial frame, yspatial =
Rd(t) ylocal. Thus, the position of a maneuvering vehicle
can be expressed in the flight lead frame as

p = RT
d (t) [x− xd(t)]

since the inverse of a rotation matrix is its transpose. In
the same way, the velocity and acceleration vectors are
given by

v = RT
d (t) [ẋ− ẋd(t)]

a = RT
d (t) [ẍ− ẍd(t)]

in the flight lead frame. Using (1), we see that a vehicle
maneuvering in the flight leader frame is described by the
linear time-varying control system

ṗ = v − ω̂d(t) p

v̇ = a− ω̂d(t) v
(2)
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(2013).

These ideas are also motivated by situations where a ma-
neuvering entity is providing local navigational services to
a family of maneuvering vehicles. Consider, for instance,
a group of underwater vehicles working together with a
team of divers without access to often used navigation aids
(such as GPS) and without high speed communications.
Location services may then be provided by a constella-
tion of surface vehicles that maneuver in support of the
underwater mission (Abreu and Pascoal, 2015).

� Research supported in part by NSF CPS grant CNS-1446812.

In this paper, we set out to show that these well known (to
pilots) ideas can be explored mathematically and are, in a
sense, not so surprising when viewed in a natural setting.

2. EQNS OF MOTION IN FLIGHT LEAD FRAME

The position and orientation of the flight leader frame (at
time t ∈ R) is given by xd(t) ∈ R3 and Rd(t) ∈ SO(3). The
velocity and acceleration, ẋd(t) and ẍd(t), are bounded
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expressed in that frame) to the spatial frame, yspatial =
Rd(t) ylocal. Thus, the position of a maneuvering vehicle
can be expressed in the flight lead frame as

p = RT
d (t) [x− xd(t)]

since the inverse of a rotation matrix is its transpose. In
the same way, the velocity and acceleration vectors are
given by

v = RT
d (t) [ẋ− ẋd(t)]

a = RT
d (t) [ẍ− ẍd(t)]
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with state (p, v) and input a, written equivalently as[
ṗ
v̇

]
=

[
−ω̂d(t) I

0 −ω̂d(t)

] [
p
v

]
+

[
0
I

]
a . (3)

3. ENERGY CONSIDERATIONS

The time varying terms induced by the use of a rotating
frame should not affect the energy in the system since they
do no work. Indeed, taking T = 1

2v
T v to be some sort of

kinetic energy of the system, we see that

Ṫ = −vT ω̂d(t) v + vTa = vTa

since ω̂d(t) is skew symmetric. This kinetic energy ex-
pression is not directly influenced by the frame rotation
described by ω̂d(t).

What sort of potential would exhibit a similar property?
Apparently, a pure quadratic will do the trick in much the
same way as for the kinetic energy. Indeed, if we take the
total energy to be

E = 1
2kpp

T p+ 1
2v

T v (4)

with kp a positive scalar, we find that

Ė = kpp
T (−ω̂d(t) p+ v) + vTa = kpp

T v + vTa (5)

which is again independent of ω̂d(t).

What is special about the potential U(p) = 1
2kpp

T p that
leads to DU(p) · ω̂ p = 0? Can this be generalized to a
larger class of potential (energy) functions? The key here
is symmetry: the potential U(p) is rotationally invariant
in that U(Rp) = U(p) for all p ∈ R3 and R ∈ SO(3). We
have the following lemma.

Lemma 1. U : R3 → R is rotationally invariant if and only
if

DU(p) · ω̂ p = 0, ∀ p, ω ∈ R3 . (6)

Proof. (⇒) Let p, ω ∈ R3 be arbitrary and set R(t) =

etω̂ ∈ SO(3), t ∈ R. Then, since U(R(t)p) = U(p), t ∈ R,
by rotational invariance, we see that

0 =
d

dt
{U(R(t)p)} = DU(R(t)p) · ω̂ R(t) p

giving (6) at t = 0.

(⇐) Let R̄ ∈ SO(3) and p ∈ R3 be arbitrary, choose

ω ∈ R3 such that R̄ = eω̂ and define R(t) = etω̂, t ∈ R, so
that R(1) = R̄. Then

U(R(t)p) = U(p) +

∫ 1

0

DU(R(τ)p) · ω̂ R(τ) p dτ = F (p)

since, by (6), the integral is zero for every τ ∈ R. �

The level sets of a rotationally invariant function are
spherical so that

Corollary 2. ∇U(p) ‖ p and DU(p) · p > 0 (away from
p = 0) for an increasing rotationally invariant function
U(p).

Summarizing, we see that if the energy of the system is
taken to be the sum of rotationally invariant kinetic and
potential energies

E(p, v) = T (v) + U(p) ,

it will evolve independently of ωd(t) according to

Ė = DU(p) · v +DT (v) · a .

4. FORMATION REJOIN BY STABILIZATION

Formation rejoin is accomplished using a trajectory that
takes (p, v) to the origin asymptotically, and formation
keeping is achieved by keeping (p, v) at the origin or at
least small. Some type of stabilizing controller may be
enlisted to do this task.

Now, aside from the time varying terms induced by the
rotating frame, this system looks largely like a double
integrator system, suggesting the use of a Proportional-
Derivative control law of the form

a = −Kpp−Kvv (7)

where, for instance,Kp andKv are symmetric and positive
definite, to stabilize the system providing both rejoin and
formation keeping.

Now, a necessary condition that (7) be stabilizing for a
time-varying ωd(t) is that it be stabilizing for every time-
invariant ωd in the desired class. Recall that, when ωd ≡ 0,
the suggested PD control law (7) does provide exponential
stability for the closed loop system. Unfortunately, the PD
control law does not in general provide stability. Indeed,
consider a constant turning maneuver in the XY plane
with desired angular velocity ωd = [ 0 0 1 ]T and feedback
gains Kv = I and Kp = diag([ a b 1 ]), with a, b > 0. For
initial conditions in horizontal plane, the system evolves
within that plane as ẋ = Ax with

A =




0 1 1 0
−1 0 0 1
−a 0 −1 1
0 −b −1 −1


 (8)

giving a characteristic polynomial of

χ(s) = s4+2s3+(a+ b+3)s2+(a+ b+2)s+ab−a− b+2

so that the system is unstable if a + b > ab + 2, for
instance, a = 4 and b = 1/2. Thus, the presence of rotation
can indeed destabilize an otherwise OK control law! Note
that, in this example, the potential U(p) = 1

2p
TKpp giving

rise to the proportional feedback −Kpp = −∇U(p) is not
rotationally invariant.

Rotational invariance of the energy thus seems like a good
idea if we are looking to achieve various forms of stability
and invariance. Indeed, if we have a rotationally invariant
potential U(p) that is positive definite and we use a control
law of the form

a = −∇U(p)− k̄v(v) (9)

then the energy

E(p, v) = U(p) + 1
2v

T v (10)

evolves according to

Ė = −vT k̄v(v) . (11)

If k̄(v) ≡ 0 then the energy is conserved, and if vT k̄v(v) >
0 for nonzero v then the energy will dissipate over time. In
either case, the closed loop system will be uniformly stable
on bounded sublevel sets of the energy.

These sets are defined independently of time and their
positive invariance (and decrease) is also described in a
time independent fashion, in spite of the fact that the
system dynamics does depend on time. Our job is to
determine when and what type of convergence may be
achieved under various choices of velocity feedback and
potential energy (giving the position feedback).
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