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Abstract: This paper addresses the controlled synchronization problem of mechanical systems
subjected to a geometric unilateral constraint as well as the design of a switching coupling law to
obtain synchronization. To define the synchronization problem, we propose a distance function
induced by the quotient metric, which is based on an equivalence relation using the impact
map. A Lyapunov function is constructed to investigate the synchronization problem for two
identical one-dimensional mechanical systems. Sufficient conditions for the individual systems
and their controlled interaction are provided under which synchronization can be ensured. We
present a (coupling) control law which ensures global synchronization, also in the presence of
grazing trajectories and accumulation points (Zeno behavior). The results are illustrated using
a numerical example.
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1. INTRODUCTION

Synchronization of coupled dynamical systems leads to
‘motion in unison’ which is a fundamental phenomenon
appearing in, for example, biological and engineering sys-
tems. The synchronization of chaotic oscillators, neural
systems and mechanical systems described by smooth non-
linear systems has been studied extensively, see Pikovsky
et al. (2001); Nijmeijer and Rodriguez-Angeles (2003);
Arenas et al. (2008); Strogatz (2003) and references
therein. Synchronization of nonsmooth systems has re-
ceived significantly less attention and to the best of the
authors knowledge, the problem of synchronization for
unilaterally constrained mechanical systems has not yet
been addressed.

In this paper, synchronization is analyzed for mechanical
systems with geometric unilateral constraints, which occur
generally if mechanical systems (such as, e.g., robots)
interact with a rigid environment. The dynamics of these
systems comprises impacts which induce velocity jumps,
rendering the system dynamics of an impulsive, hybrid na-
ture (Leine and van de Wouw (2008); Goebel et al. (2012);
Michel and Hu (1999)). For unilaterally constrained me-
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chanical systems, accumulation points of infinitely many
impact events can generally be observed, which is known
as Zeno-behavior. To describe the dynamics which in-
cludes such accumulation points, system models in terms
of Measure Differential Inclusions (MDIs) are employed in
Moreau (1988); Leine and van de Wouw (2008).

Because impacts of unilaterally constrained mechanical
systems are a consequence of collisions and therefore are
state-triggered events (i.e., occur at a certain position),
they generally do not occur at the same time instants for
nearby trajectories. Therefore, one expects a small time-
mismatch of the impact time instants even for arbitrarily
close initial conditions. During this time (mismatch) inter-
val, a large Euclidean error is observed, cf. Biemond et al.
(2013); Brogliato et al. (1997); Forni et al. (2013); Leine
and van de Wouw (2008); Menini and Tornambe (2001).
Hence, the Euclidean synchronization error dynamics is
generally unstable in the sense of Lyapunov and existing
synchronization results are not applicable to mechanical
systems with unilateral position constraints. An exception
is the synchronization between a mechanical system and
an observer, in which the impacts of the observer state can
be made to coincide with the impacts of the mechanical
systems, as exploited in Baumann and Leine (2015).
Recently, focusing on the stability of jumping trajectories,
the ‘peaking phenomenon’ has been addressed for hybrid
systems in the framework of Goebel et al. (2012) by consid-
ering stability in terms of a novel distance function which
takes the jump characteristics into account, cf. Biemond
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et al. (2013, 2015). This approach has been extended in
Postoyan et al. (2015) towards incremental stability. These
approaches, however, are not applicable if either the time
between state jumps can be arbitrarily small (especially
in Zeno events), or if jumps can occur where the pre-
and post-jump states are arbitrary close to each other.
Both phenomena are generally expected in unilaterally
constrained mechanical systems, motivating the synchro-
nisation problem under study, in which hybrid trajectories
are expressed by measure differential inclusions.

We distinguish three main contributions. First, we con-
struct a distance function for mechanical systems with
multiple degrees of freedom and a single geometric unilat-
eral constraint, therewith extending the distance function
design in Schatzman (1998)). This distance function can
be used to define when solutions are considered close
to synchronization or when they are synchronized. The
synchronization problem formulation, which we establish
based on the presented distance function, is applicable to
generic mechanical systems with a unilateral constraint.
To the best of the authors knowledge, this formulation
is the first that is applicable to state-triggered hybrid
systems and does not resort to Poincaré maps. Second,
Lyapunov arguments are used to investigate this synchro-
nization problem for the one-dimensional case and provide
conditions on the individual systems and their controlled
interaction which guarantee that synchronization indeed
occurs. In contrast to the hybrid systems in Biemond et al.
(2013); Forni et al. (2013), impacts with arbitrary small
velocity jumps can occur, which severely complicates the
Lyapunov function design and analysis. Third, we design
a control law to enforce controlled synchronization using
non-impulsive forces generated by the interaction network.
Finally, the results are illustrated with a numerical exam-
ple.

2. MECHANICAL SYSTEMS WITH A SINGLE
UNILATERAL CONSTRAINT

We consider an n-DOF (degrees of freedom) mechanical
system subjected to a single frictionless geometric uni-
lateral constraint. The state of the system is described
by the generalized coordinates g(t) € R™ and veloci-
ties u(t) € R™. The non-impulsive dynamics is described
by the kinematic equation and the equation of motion
given by
M — h(q,u,7,t) = w,

where h(g,u,T,t) is a function of the state (g,u), the
control inputs 7 and the time ¢ explicitly. We will use the

notation (x,y) = (ch yT)T, where x,y € R™. The mass

matrix M = MT > 0 is symmetric and assumed to be
constant and positive definite. The motion of the system
is restricted by a single scleronomic geometric unilateral
constraint g(g) > 0, where g : R” — R is an affine function
of q. The constraint velocity v(u) = w = w'u is

the time derivative of the constraint distance g, where
w = (g—g)T is the associated generalized force direction.

The force law for the constraint force A is described by the
inequality complementarity condition, see Glocker (2001)

(also referred to as Signorini’s law):

0<g(a) L A>0, (2)
where a L b denotes ab = 0. The admissible set of
states is A := {(q,u) € R*|g(q) > 0}. The boundary
of A is partitioned as 04 = 0AT U OA~ with 0AT :=
{(g,u) e R*" | g(q) =0, y(q,u) > 0} and DA~ =

{(q,u) e R™ | 9(q) =0, v(g,u) < 0}. An impact is immi-
nent if the state is in d.A~ because an impact is required
for the system to remain in the admissible set A. The
impulsive dynamics is described by the impact equation

M(ut —u™) = wA, (3)

where u™ () = limqo w(t+7) and w*(¢) = lim, o u(t+7)
are the pre- and post-impact velocities, respectively. The
constraint impulse A is given by the generalized Newton’s
law (see Glocker (2001)) with coefficient of restitution
e €0,1]:

g(q)=0: 0<ALw (um+eu”)>0 (4
We note that infinitely many impacts can occur in a finite
time interval, known as Zeno behavior or the accumulation
of impact time instants. Our desire to accommodate the
modeling of such behaviors motivates describing the dy-
namics with measure differential inclusions (1)—(4), which

can be written in the compact form (see Moreau (1988);
Leine and van de Wouw (2008))

dq = udt,
Mdu — h(q,u,7,t)dt = w(Adt + Adn),

with A and A satisfying (2) and (4). The generalized
coordinates ¢ : R — R" are absolutely continuous func-
tions in time and their measure dq has density uw with
respect to the Lebesgue measure dt. The generalized ve-
locities u : R — R™ are discontinuous due to the impulsive
dynamics, but they are assumed to be functions of special
locally bounded variation (see Ambrosio et al. (2000)),
such that the pre- and post-impact velocities u™ (t) and
u™(t), respectively, are defined for every point in time. The
measure du has a density @ with respect to the Lebesgue
measure dt and a density (ut — uw™) with respect to the
atomic measure dn, i.e., du = udt + (u™ — w™)dn. The
atomic measure dn = ) . dd;, is the sum of Dirac point
measures dd;, at the discontinuity points t;, cf. Glocker
(2001).
As shown in Leine and Baumann (2014), the impact equa-
tion (3) together with the impact law (4) results in an
explicit impact map Z : (q,u”) — (q,u™) = Z(q,u™),
where

Z(a:uw) = (4. Z4(u7))

with Z,(u™) = (1+e) prox%(q) (u™) —eu,

{ulwn >0} if g(q) =0,
R™ if g(g) >0

and prox} (u) denoting argmingyer |[u — v||ar. In the
following section, we consider the synchronization problem
for mechanical systems of the form (1)—(4). The ‘peaking
phenomenon’, which appears when the Euclidean synchro-
nization error is considered, is induced by the nature of the
underlying system. We construct a function d that takes
the role of distance and is continuous when evaluated along
solutions by explicitly incorporating the impact map Z.
The property of non-expansivity of Z as defined in Bau-
mann and Leine (2015) leads to a great simplification in
the construction of the distance function.

where Tc(q) = {
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