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Abstract: This paper considers the problem of swing up and stabilization for the Acrobot. It is
shown that stable manifold method which has been proposed for computing nonlinear optimal
control is capable of designing feedback controllers for this problem. An optimal stabilization
controller is obtained as a single feedback law by numerically solving a Hamilton-Jacobi equation
by the stable manifold method. It is shown that unlike existing methods for Acrobot swing up
such as partial feedback linearization, the resultant control is mechanically indigenous in the
sense that it uses reactions of arms effectively and, as a consequence, control input is kept low.
A number of simulations verify the effectiveness and robustness of the controller.
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1. INTRODUCTION

Underactuated systems are mechanical systems which
have fewer control inputs than degrees of freedom. Con-
trol of underactuated systems is currently an active topic
for many researchers due to wide application range in
Robotics or aerospace field (Liu and Yu, 2013; Xin and
Liu, 2013). The Acrobot is a 2-dimensional underactuated
mechanical system often used as a benchmark problem for
testing nonlinear control methods. It consists of two links
and an actuator is installed only at the second joint. A
common control objective of the Acrobot is to swing it up
from the downward position to the unstable upright posi-
tion and to stabilize it vertically. This is a challenging task
because of the movement in a large range of nonlinearity.

Generally, the swing up control is divided into two phases,
first, the swing up phase in which nonlinearity is dominant,
and then, stabilization phase which estabishes autonomus
stability in a neighborhood of the origin. There are some
other effective ways to design swing up controllers such
as using partial feedback linearization (Spong, 1995), en-
ergy feedback (Xin and Yamasaki, 2012; Xin and Kaneda,
2007), trajectory tracking (Zhang et al., 2013), Lyapunov
based control (Zergeroglu et al., 1998) and intelligent
control (Brown and Passino, 1997). However, switching
controller has no guarantee of stability in the vicinity of
the boundary. Researchers in (Davison and Bortoff, 1997;
Xin and Kaneda, 2001) propose methods to enlarge the
region of attraction (RoA) of linear controllers, stabiliza-
tion of the Acrobot by linear control is inherently diffi-
cult. Backstepping approachOlfati-Saber (2000) should be

mentioned as a single feedback control method under some
assumptions that are difficult to satisfy generally.

In this paper, we show that it is possible to design
a single (without switching) optimal feedback controller
for swing up and stabilization of the Acrobot using the
stable manifold method (Sakamoto and van der Schaft,
2008; Sakamoto, 2013). The method has been developed
for numerically computing the derivative of solution for
Hamilton-Jacobi equations (HJEs). When it is applied for
the Acrobot swing up problem, it directly enlarges the
RoA for stabilization so that the downward position is
included in RoA. For a survey and other solution methods
for HJEs, we refer to Aguilar and Krener (2014); Aliyu
(2011); Beeler et al. (2000); Lukes (1969); Navasca and
Krener (2007).

The organization of the paper is as follows. The Acrobot
model is introduced in § 2. § 3 summarizes the theory of
the stable manifold method for HJEs. Controller design is
precisely explained in § 5 and simulation results are shown
in § 6.

2. MODELING AND ANALYSIS OF THE ACROBOT

In this section, we derive a nonlinear model of the Acrobot.
Figs. 1, 2 show the Acrobot and its schematic model. The
control torque is applied only to the second joint from an
actuator through a pulley and a timing belt.

For the ith link (i = 1,2), g; is the angle, m; is the mass,
l; is the length, [.; is the distance from ith joint to the
center of mass (COM), J; is the inertia around the center
of mass, and let g be a gravitational acceleration (9.801
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m/s?). The equation of motion of the Acrobot is derived
as follows by the method of Lagrange.

M(q2)j+ C(q,4)q + G(q) = T, (1)
where

o = i) i

__|a1 + a2 + 2a3 cosqa az 4 az cos qa
- as + a3 cos gs as

. |—asdesings —as(d1 + ¢2) singe
C(qvq) - |: asqy sin g 0 :| ;
_ |—bising; — by sin(g1 + ¢2)
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a)p = mngl + mgL% + Jl, Ay = mzLEQ + J27
as =mol1Ley, by = (miLei +maly)g,
by = myLcog.

7 = [r1, m|T are the torque on the joints. We assume
that there exists resistance force proportional with angular
velocity such as viscous friction or counter electromotive
force of the actuator. Then 7 is given as

T = —H1q1,

T2 = nKpcu — p2qe,
where u is the control input voltage for the actuator, n
is gear ratio of the pulley, Kp¢ is electromotive torque
constant and p1, po is the viscous resistance coefficient of
the joints.

Defining x = |21, 72,23, 24]7 = [q1,¢2,d1,¢2)T as system
variables, and letting H(q,q) = [Hi(g,q), H2(g,9)]" =
C(q,9)q+G(q) + [u1d1, p2ge]”, the dynamic equation (1)
is rewritten in the state space form as

i = f(z) + g(a)u, 2)
where
i .
f(@) = |
M @) _H2§ZZ gﬂ
M 0
0
g(x) = r
REGIn

The purpose of this paper is to design a single nonlinear
optimal feedback controller for swinging up and stabiliz-

Fig. 1. Acrobot experiment devise
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Fig. 2. Acrobot model

Table 1. System parameters

mi Arm1 weight 0.850[kg]
1 Arm1 length 0.154[m]
le1 Arm1 length from joint to COM -0.0189[m]
Ji Arml inertia 6.25x 103 [kg-m?]
i Arm1 viscous resistance coefficient | 5.50x1073[N-m-s]
mo Arm?2 weight 0.420[kg]
lo Arm2 length 0.210[m]
leo Arm?2 length from joint to COM 0.0743[m]
J2 Arm?2 inertia 4.48%x1073[kg'm?]
142 Arm?2 viscous resistance coeflicient 0.0160[N-m-s]
g Acceleration of gravity 9.801[m/s?]
n Gear ratio 14:48
Kpe Electromotive torque constant 0.0160[N-m/V]

ing the Acrobot from the stable equilibrium point x =
[,0,0,0] to the unstable equilibrium point = [0, 0,0, 0].
The system parameters are shown in Table.1.

3. HAMILTON-JACOBI EQUATION AND STABLE
MANIFOLD

In this section, we briefly review the stable manifold
method proposed in Sakamoto and van der Schaft (2008);
Sakamoto (2013) for numerically solving HJEs for nonlin-
ear optimal control problem. It is first shown that a stable
manifold of the Hamiltonian system associated with a HJE
is equivalent to the stabilizing solution of the HJE (I).
Then, the stable manifold method algorithm to compute
flows on the stable manifold of the Hamiltonian system is
presented (II). Finally, the optimal state feedback function
is constructed from the flow data by polynomial functions
that define the stable manifold (III). In what follows, the
procedures (I)~(III) will be described with some details.

Let us consider the optimal regulation problem for the fol-
lowing nonlinear affine system and quadratic cost function
J.

&= f(x) +g(x)u, z(0) = zo

1 [~ . . (3)
J = 5/ (2" Qz + u" Ru) dt,
0

where z € R, w € U € R™ and R € R™*™ @ € R"*™
are positive-definite matrices. We also assume that f(-) :
R™ — R™ with f(0) =0and g(:) : R - Rareall C*. It is
then possible to write f(z) = Az+o(|z]), g(x) = B+0(|z|)
with real matrices A € R"*" B € R"*™.
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