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Abstract: A Bayesian framework provides a methodology in which inferences from measure-
ment data can be used to bound the uncertainties in the predictive simulation of a physical
system. The accuracy of these bounds relies on the satisfaction of statistical assumptions on
the measurement error. Discrepancies between the model and the true physics can invalidate
these assumptions. We examine the effect of such model discrepancies in the context of an
oscillating cantilever beam. First we illustrate the influence of discrepancies in a simplified model
of purely periodic signals and then we observe how discrepancies affect the accuracy of prediction
uncertainty bounds using Bayesian parameter inference on a Euler-Bernoulli beam model. Our
study shows small changes in the inference setup can result in significant differences in prediction
accuracy and calls attention to important considerations for the practical application of Bayesian

parameter estimation.
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1. INTRODUCTION

Parameter estimation is an important step in developing
practical models for control applications. Typically the
relationship between parameters and model output is non-
linear, making estimation a non-trivial task. In classical
approaches, parameter estimation is cast as a nonlinear
programming problem where the difference in model out-
put and measurement data is mapped into a non-negative
cost functional. One of the most common forms of cost
functional is the sum-of-squares residual, which computes
the sum of the squared difference between model output
and measurement data. Various standard optimization al-
gorithms have been designed to find the set of parameters
that minimizes this cost. The resulting optimal parameters
are taken as the true values for the system model, which
can then be used for control applications.

A shortcoming of this approach is that no mathematical
model is ever perfect, inevitably leading to differences
between the model and reality. One way to address this
is to employ the Bayesian framework, as described in, e.g.,
Kennedy and O’Hagan (2001). The general idea is that
if one knows the statistics of the model error, then the
uncertainty in the parameter estimates can be statistically
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characterized as well. This uncertainty can be used to
quantify the uncertainty in the model output, providing
a better idea of the likely output of the true system and
improving the usefulness of the model. For instance, Crews
et al. (2013) and McMahan and Smith (2014) show how
Bayesian uncertainty information can be used to design ro-
bust nonlinear controllers. More information on Bayesian
parameter estimation in the context of uncertainty quan-
tification can be found in Smith (2014).

As promising as this approach is, a crucial problem is
the difficulty of accurately characterizing the statistics of
the modeling error. A widely used assumption is that the
measurement error is independent, identically distributed
(i.i.d) Gaussian noise. The validity of this assumption
realist on the system of interest being modeled well enough
that the only model errors are completely random and in-
dependent. Unfortunately, model errors are frequently cor-
related due to unmodeled physics, making them effectively
as unpredictable as random errors but not independent.
We refer to these correlated errors as model discrepancies.

There are some approaches for estimating such discrep-
ancies from data. One is described in Raol et al. (2004)
which applies the variational method of Detchmendy and
Sridhar (1966) to estimate unknown model dynamics from
data (effectively a Kalman filter). It is not clear, however,
how this method can be used for prediction beyond the
fitting interval, where no data is available from which to
infer the nature of the discrepancy. Other examples are
found in Heino and Somersalo (2004); Heino et al. (2005),
but these are concerned with problems such as medical
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imaging where parameter inference is the end-goal rather
than a step in producing dynamic simulations to predict
model behavior at some unknown time. Model discrepancy
in the Bayesian context has been recently discussed in
Brynjarsdéttir and O’Hagan (2014), which develops some
simulated examples of Bayesian parameter estimation in
a simple algebraic model with model discrepancy using
Gaussian processes to model the discrepancy term.

In this paper, we focus on the effects of model discrep-
ancy on Bayesian parameter estimation for damped os-
cillatory systems with the goal of predictive simulation.
We first outline the Euler-Bernoulli model and its numer-
ical approximation and then give a brief overview of the
Bayesian framework for parameter estimation. To avoid
the complexities of analyzing the beam model while still
considering some of its key features, we examine in some
detail some of the characteristics of parameter estimation
and prediction for a simple model of periodic signals with
model discrepancy terms. Finally, we return to calibration
of the beam model and study an example of estimating
its parameters from experimental data obtained from a
vibrating cantilever beam. The example illustrates signif-
icant differences in prediction accuracy occurring due to
changes in the time interval used for calibration.

2. MODEL DEVELOPMENT

We consider the problem of identifying the physical pa-
rameters of a model of an aluminum beam driven by a
piezoelectric patch. In this section, we briefly outline the
mathematical model for the dynamics of the beam whose
parameters we will later estimate. Further details on the
model and its numerical approximation can be found in
Chapters 7 and 8 of Smith (2005) and the references
therein.

2.1 Euler-Bernoulli Beam with Kelvin-Voigt Damping

The strong formulation of the Euler-Bernoulli beam with
no applied force is
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where p is the density of the beam, = is the viscous
damping due to friction from air, and M is the bending
moment of the beam. For brevity the boundary conditions
corresponding to the cantilever mounting of the beam are
omitted. The bending moment is made up of the three
terms
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where M., My, M, are the elastic, damping, and patch
moments, respectively. Here 1,(z) is the characteristic
function for the patch region.

The weak formulation is
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The space of test functions is defined to be W =
H3(0,L) = {¢ € H*(0,L) | ¢(0) = 0, ¢'(0) = 0}. This

definition ensures that ¢ satisfies the boundary conditions
for the cantilever beam at the fixed end and that ¢ is twice-
differentiable with respect to x. Using integration by parts
twice on the moment term yields
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Expanding the moment term gives
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The integration limits for the term on the right hand side
come from [py, p,], the interval in space in which the patch
lies.

2.2 Numerical Approximation

A semi-discrete ODE approximation of the PDE model
suitable for computational implementation is derived
from the weak approximation by projecting the infinite-
dimensional function space W onto a finite-dimensional
space WV, Here N +1 is the dimension of W%, the vector
space of all linear combinations of a suitably chosen ¢;
for j =1,...,N + 1. In this paper, ¢; are standard cubic
B-splines modified to ensure satisfaction of the essential
boundary conditions (see Smith (2005)). The transverse
displacement is approximated as

N+1
w(z,t) ~

wh (z,t) = Z

i=1

wi(t)¢; (x)-

By substituting w”¥ for w in the weak formulation we
obtain the vector-valued system

Mio(t) + Cir(t) + Kw(t) = f(1),

where w(t) = [wi(t) -+ wn+1(t)] is the vector of coeffi-
cients and the dot notation indicates the derivative with
respect to t. The M, C, and K terms are respectively the
(N +1) x (N + 1) mass, damping, and stiffness matrices
with entries
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The prime notation indicates a derivative with respect to
x. The f term is the (N 4 1) x 1 vector discretization of
the input given by
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We rearrange to obtain the first-order system

(1) = Ax(t) + F(1)

y(t) = D(xobs)2(t)
where z(t) = [w(t) @(t)]" and
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