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Abstract: Motivated by the needs of real-time tasking of a nonlinear controlled dynamical
system, we develop the notion of a real-valued label space to represent a complete graph. A walk
in the graph maps to a controlled trajectory in label space. We use the indicator function as
our primary tool to formulate such problems within a calculus-based setting. Urysohn’s Lemma
forms the key bridge for approximating the resulting nonsmooth optimal control problem to a
smooth computational framework. An illustrative uninhabited-aerial-vehicle collection planning
and and scheduling problem is solved to illustrate the viability of the entire framework.
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1. INTRODUCTION

Planning and scheduling problems are typically considered
to be in the realm of artificial intelligence (AI) [Russell
and Norvig (2010)]. The operations of many intelligence,
surveillance and reconnaissance (ISR) assets, such as an
uninhabited aerial vehicle (UAV) or an orbiting spacecraft,
involve some form of electromagnetic collection planning
and scheduling. In such problems, the vertices of the plan-
ning and scheduling graph are ISR tasks and the weights
are functionals of the trajectories of the dynamical system.
The introduction of controlled dynamics in such graph
problems implies the following: in addition to the genera-
tion of a task schedule, a classic graph-theoretic problem,
the weights of the graph are also part of the unknowns.
Thus, a mere construction of the graph requires solving
O(N2

v ) control problems, where Nv are the number of ver-
tices. Furthermore, because the weights are not constants,
O(N2

v ) control problems need to be solved for each instance
of time. Given such seemingly insurmountable issues, it
is not surprising that the control problems are relegated
to “inner loops” of a larger AI problem. Consequently,
the outer AI loop dominates the operational performance
characteristics of ISR assets [Ross et al. (2016)].

In this paper, we show that the combined AI-control
problem can be addressed at the same loop level. From
an AI perspective, we do not generate the weights of
the graph; instead, we consider the “law of weights” as
determined implicitly by the nonlinear dynamics ẋ =
f(x,u, t) associated with the ISR asset. This concept is in
sharp contrast to the existing literature in that we do not
compute the weights explicitly. From a control-theoretic
perspective, we consider the AI problem to be part of an
optimal control framework that involves the vertex labels
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as (an indirect) part of the state space. Through the use
of an indicator function, the full problem can then be
posed as a nonsmooth optimal control problem [Vinter
(2000), Clarke et al. (1998)]. Urysohn’s Lemma [Tao
(2011), Rudin (1991)] forms the key bridge between the
nonsmooth optimal control problem formulation and the
computational framework. The entire process is illustrated
by a sample numerical problem that involves a UAV with
a gimballed sensor package mounted on its underside.

2. DEVELOPMENT OF A REAL-VALUED LABEL
SPACE

A collection planning and scheduling graph consists of
a finite collection of labeled vertices Nv ∈ N, where
each vertex is called a task. An example of a task is to
point a camera to the location of a specific object for
the purposes of imaging. Let each task, and hence each
vertex of the graph, have an intrinsic nonnegative value,
vi ∈ R+, i = 1, . . . , Nv. The weights of the edges of the
graph are controllable by way of an ordinary nonlinear
differential equation,

ẋ = f(x,u, t), u ∈ U(x, t) ⊆ RNu (1)

where x ∈ RNx is the state vector, u is a control vector
that is constrained to a state-dependent set U(x, t) of
RNu , and t is time. The multifunction U is not used
merely for the sake of greater generality. It turns out
that a large number of practical problems involve state-
dependent control sets either because of physics-based
constraints or because of the choice of the coordinate
system [Ross (2015)].

A dynamically feasible walk is a collection of scheduled
tasks that can be accomplished by the ISR asset per some
schedule. The value of the walk is given by a payoff func-
tion that depends upon the values assigned to the tasks.
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The problem is to find a dynamically feasible walk within
a finite time window [t0, tf ] and clock time constraints that
maximizes value of a given payoff function. Additional
feasibility constraints are imposed on the problem, and
these will be discussed later.

We associate each vertex i = 1, . . . , Nv of the graph to
distinct real-valued sets Li in RNl , Nl ∈ N; see Fig. 1.
Each Li may be a point or a continuous subset in RNl . A
vector l ∈ RNl is a collection of real values that represent
the labels associated with the vertices of the graph. To
execute task i, the condition l ∈ Li must be satisfied.
Thus Li represents the entire collection of constraints that

Fig. 1. The vertices of a collection planning graph (left)
are mapped to sets LA,LB ,LC and LD in real-valued
label space (right).

must be satisfied to successfully execute task i.

A dynamically feasible walk in the “graph space” generates
a trajectory s �→ l in “label space.” The label-space
trajectory passes through the appropriate regions Li, i =
1, . . . , Nv in RNl . The label space trajectory is implicity
governed by (1) by way of some function

L : x �→ l (2)

The “shape” of the label-space trajectory determines the
weights of the edges in graph-space and vice versa; see
Fig. 2.

Fig. 2. Illustration of two dynamically feasible label-space
trajectories corresponding to the same walk BDC but
with different weights.

3. DEVELOPMENT OF A PAYOFF FUNCTIONAL

Let I(·,Li) denote the Kronecker indicator function of Li

defined by 1

1 The indicator function in nonsmooth calculus is used differently
[Vinter (2000); Clarke et al. (1998)]; hence, we distinguish our use of
the term by using Kronecker as the qualifying adjective at its first
usage.

I(l,Li) :=

{
1 if l ∈ Li

0 if l �∈ Li
(3)

Let t �→ x be any given state trajectory. Then the
functionals Ti : x(·) �→ R+ defined by

Ti[x(·)] :=
∫ tf

t0

I(L(x(t)),Li

)
dt, i = 1, . . . , Nv (4)

generate the dwell times or task times over each vertex.
Let Δti ∈ R+ denote the value of the dwell time computed
by (4); that is,

Δti = Ti[x(·)], i = 1, . . . , Nv (5)

Then, a payoff functional can be modeled through the use
of a value function

V : (Δt1,Δt2, . . . ,ΔtNv ) �→ R (6)

that associates a value for the set of tasks performed.
For instance, one basic model for evaluating a payoff
functional that is based solely on the binary condition of
instantaneous tasking can be written as,

V 0(Δt1, . . . ,ΔtNv ) :=

Nv∑
i=1

vi
(
1− I(Δti, 0

))
(7)

In many instances, a minimum amount of task time Δt∗i >
0 may be necessary to execute task i. In this case, a payoff
functional may be evaluated using the value function

V ∗(Δt1,Δt2, . . . ,ΔtNv ) :=

Nv∑
i=1

vi step
(
Δti −Δt∗i

)
(8)

where, step(ξ) is defined by

step(ξ) :=

{
1 if ξ ≥ 0
0 if ξ < 0

4. DETECTING AND CONSTRAINING
AUTONOMOUS RETASKING

The value of the dwell time Δti generated by (4) is agnostic
to the countable additivity of measuring time intervals.
That is, (4) can produce the same Δti in countable infinite
ways as indicated in Fig. 3. Hence, it is necessary to

Fig. 3. Schematic of two different functions t �→
I(L(x(t)), li

)
that generate the same Δti = Δt =

Δt1 +Δt2.

detect and prevent the same task being performed more
times than stipulated. We incorporate such constraints as
follows. The derivative of the function t �→ I(L(x(t)),Li

)
,

denoted by dtIi is given by,

IFAC NOLCOS 2016
August 23-25, 2016. Monterey, California, USA

475



Download English Version:

https://daneshyari.com/en/article/5002356

Download Persian Version:

https://daneshyari.com/article/5002356

Daneshyari.com

https://daneshyari.com/en/article/5002356
https://daneshyari.com/article/5002356
https://daneshyari.com

