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Abstract: In this paper, we compare four measures of the empirical observability gramian,
including the determinant, the trace, the minimum eigenvalue, and the condition number, which
can be used to quantify the observability of system states and to obtain the optimal PMU
placement for power system dynamic state estimation. An adaptive optimal PMU placement
method is proposed by automatically choosing proper measures as the objective function. It is
shown that when the number of PMUs is small and thus the observability is very weak, the
minimum eigenvalue and the condition number are better measures of the observability and are
preferred to be chosen as the objective function. The effectiveness of the proposed method is
validated by performing dynamic state estimation on an Northeast Power Coordinating Council
(NPCC) 48-machine 140-bus system with the square-root unscented Kalman filter.
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1. INTRODUCTION

Increasing integration of intermittent renewable energy
and current effort of developing smart grid will make
electric power systems more and more dynamic. How-
ever, the most widely studied power system static state
estimation (SSE) (Schweppe-Wildes (1970); Abur (2004);
Monticelli (2000); Irving (2008); He (2011); Qi (2012))
cannot capture the dynamics of power systems well due
to its dependency on slow update rates of Supervisory
Control and Data Acquisition (SCADA) systems.

By contrast, real-time dynamic state estimation (DSE)
enabled by phasor measurement units (PMUs), which
has high update rates and high global positioning system
(GPS) synchronization accuracy, can provide accurate dy-
namic states of the system and thus will play a critical
role in achieving real-time wide-area monitoring, protec-
tion, and control (Begovic (2005); Qi (2015b)). Until now
DSE has been implemented by extended Kalman filter
(Huang (2007); Ghahremani (2011)), unscented Kalman
filter (Wang (2012); Singh (2014)), square-root unscented
Kalman filter (Qi (2015a,c)), extended particle filter (Zhou
(2013)), cubature Kalman filter(Qi (2016a)), and observers
(Taha (2015); Qi (2016a)).
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The well-known optimal PMU placement (OPP) problem
was originally developed for SSE. It is mainly based on
the topological observability criterion, which only spec-
ifies that the power system states should be uniquely
estimated with the minimum number of PMUS but ne-
glects important parameters such as transmission line
admittances by only focusing on the binary connectivity
graph (Baldwin (1993); Li (2013)). Under this frame-
work, many approaches have been proposed, such as
mixed integer programming (Xu (2004); Gou (2008)), bi-
nary search (Chakrabarti (2008a)), metaheuristics (Milo-
sevic (2003); Aminifar (2009)), particle swarm optimiza-
tion (Chakrabarti (2008b)), and eigenvalue-eigenvector
based approaches (Almutairi (2009); Korba (2003)). An
information-theoretic criterion is also proposed to generate
highly informative PMU configurations (Li (2013)).

However, not much research has been done on OPP for
DSE. In (Kamwa (2002)) numerical PMU configuration
algorithms are proposed to maximize the overall sensor
response while minimizing the correlation among sensor
outputs based on the system response under many con-
tingencies. In (Sun (2011)) an OPP strategy is proposed
to ensure a satisfactory state tracking performance but
it depends on a specific Kalman filter. In (Qi (2015c¢))
the empirical observability gramian (Lall (1999, 2002);
Hahn (2002); Singh (2006)) is applied to quantify the
degree of observability of the system states and OPP is
achieved by maximizing the determinant of the empirical
observability gramian. Compared with (Kamwa (2002))
and (Sun (2011)), (Qi (2015c)) has a quantitative mea-
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sure of observability, which makes it possible to optimize
PMU locations from the point view of the observability of
nonlinear systems. Besides, it only needs to deal with the
system under typical power flow conditions and also does
not depend on the specific realization of any Kalman filter.

As in (Qi (2015c¢)), there are various measures of the em-
pirical observability gramian that can be used to quantify
the observability of the system state. In this paper, we
compare these measures and further propose an adaptive
OPP method for power system dynamic state estimation
by automatically choosing proper measures as the objec-
tive function to guarantee best observability.

The remainder of this paper is organized as follows. Section
2 briefly introduces power system dynamic state estima-
tion. Section 3 discusses the definition and implementation
of empirical observability gramian. Section 4 introduces
the OPP method based on the empirical observability
gramian and proposes an adaptive OPP method by mak-
ing full use of different measures. The results are presented
in Section 5 in order to test and validate the proposed
method. Finally the conclusion is drawn in Section 6.

2. POWER SYSTEM DYNAMIC STATE
ESTIMATION

Different from SSE, DSE estimates the dynamic states
(internal states of generators), rather than the static states
(voltage magnitude and phase angles of buses). In order
to perform DSE, the nonlinear dynamics and the outputs
of a power system is described in the following form:

T = .f(xv u) (1)

y = h(z,u)
where f(-) and h(-) are the state transition and output
functions, & € R" is the state vector, u € R" is the input
vector, and y € RP is the output vector.

We consider two types of generator models, the fourth-
order transient model and second-order classical model.
For generator with transient model, the fast sub-transient
dynamics and saturation effects are ignored and the gen-
erator is described by fourth-order differential equations:
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where 7 is the generator serial number, §; is the rotor angle,
w; is the rotor speed in rad/s, and e;; and ej; are the
transient voltage along ¢ and d axes; ¢4; and i4; are stator
currents at ¢ and d axes; T},; is the mechanical torque, T,;
is the electric air-gap torque, and Eyg4; is the internal field
voltage; wq is the rated value of angular frequency, H; is
the inertia constant, and Kp; is the damping factor; Téoz'
and T, are the open-circuit time constants for ¢ and d
axes; T4 and xg; are the synchronous reactance and x:ﬂ

and z,, are the transient reactance at the ¢ and d axes.

Generators with classical model are described by the first
two equations of (2) and e}, and ej;; are kept unchanged.

Tmi and Eyfg; are considered as inputs and are assumed
to be constant and known. Let Gp denote the set of
generators where PMUs are installed. For generator i €
Gp, the terminal voltage phaosr Ey; = er; + jer; and the
terminal current phasor I; = ig; + jiy; can be measured,
and are used as the outputs.

The dynamic model (2) can be rewritten in a general state
space form in (1) and the state vector x, input vector wu,
and output vector y can be written as
T
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The g, ia;, and Te; in (2) are actually functions of a:
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where ¥; = Wg; + j¥p; is the voltage source, ¥ and ¥
are column vectors of all generators” ¥g; and ¥r, e4 and
eq; are the terminal voltage at ¢ and d axes, and Y; is the
ith row of the admittance matrix of the reduced network
Y whose elements are constant if the difference between
zy and z; is ignored (Wang (2015)), Pe; is the electrical
active output power, and Sg and Sy; are the system base
MVA and the base MVA for generator i, respectively.

The outputs ig and i; have been written as functions of
x. Similarly, the outputs eg; and ej; can also be written
as function of x:

eRi = €q; Sin 0; + eg; cos §;
eri = €qi Sin d; — eq; cos d;.

The continuous model in (1) can be discretized as

zp = fol®r_1,ur_1)
Yy, = h(zk, uk)

(6)

where the state transition functions f; can be obtained by
the modified Euler method as

Ty =T+ f(Tr_1,ur_1)AL (7)
7o f(@r, ug) + ];(-'Bk—lvuk—l) ()
T = Tp_1 + }At. (9)
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