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Abstract: For a nonlinear system, affine in the control and in the disturbance, a generalized
tracking problem is considered. The prescribed trajectory and prescribed discrete points should
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system is feedback linearized, the previous results on a robust tracking for a linear system
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1. INTRODUCTION

The tracking problem for a nonlinear system is widely
presented in the literature (see e.g. Slotine (1983); Bentash
(1990); Lu (1996); Li and Krstić (1997); Kamalapurkara
et al. (2015) and references therein). In many publica-
tions, an original nonlinear system is linearized by two
main approaches. The first approach exploits the Taylor
series expansion along a nominal trajectory (Shinar (1981);
Vukić et al. (2003)). The second approach is a feedback
linearization, pioneered by Isidori (1989). In this approach,
by using under some assumptions a suitable transforma-
tion of state variables and by definition of an auxiliary
control input, one can treat an original nonlinear control
problem as a linear one, thus applying all the variety
of linear control theory results. Various applications are
presented e.g. in Bezick et al. (1995); Monahemi and Krstić
(1996); Devaud and Siguerdidjane (2002); Chen et al.
(2004) and other papers. It should be noted that most
of publications on the feedback linearization deal with
a one-sided optimization problems, while the problems
with a disturbing counterpart were investigated less (let
us mention Isidori and Astolfi (1992); Mei et al. (1999);
Chen et al. (2004))

A generalized tracking problem for a linear system with
an unknown disturbance on a finite control interval was
formulated by Turetskij (1989); Tretyakov and Turet-
sky (1995). In this formulation, the cost functional is a
Lebesgue-Stieltjes integral of a weighted squared discrep-
ancy between an actual and a prescribed system motion.
This integral is generated by a measure, consisting of
discrete and continuous components. The discrete measure
represents a desire of a control designer to guide the system
close to prescribed discrete points, while the continuous
component corresponds to the problem of tracking a given
trajectory at some time intervals in the sense of L2. A
tracking algorithm in the sense of minimization of such
a functional, robust with respect to an unknown distur-
bance, was proposed by the author in Turetskij (1989)
and developed by him and his co-authors in Shinar et al.

(2008) and Turetsky et al. (2014). The case of a pure
discrete measure (the route realization problem) is consid-
ered in Turetsky (2016). The robust tracking strategy is
constructed as the optimal strategy in an auxiliary linear-
quadratic differential game (LQDG). Penalty coefficients
for the control and the disturbance expenditure are small,
i.e. a cheap-control approach is utilized. Various specific
problems can be obtained from this generalized tracking
problem, depending on the controlled system, cost func-
tional structure or specific prescribed trajectory.

In the present paper, the generalized tracking problem is
formulated for a nonlinear feedback linearizable system.
Once the system is linearized, a robust tracking by the
cheap-control LQDG strategy can be applied. The tracking
conditions for a linear system (Turetsky (1999); Shinar
et al. (2008); Turetsky et al. (2014)) are translated into
respective conditions in terms of an original nonlinear
system.

2. PROBLEM STATEMENT

Consider a SISO system

ẋ = f(x) + g1(x)u + g2(x)v, x(0) = x0, t ∈ [0, tf ], (1)

y = h(x), (2)

where x ∈ R
n is the state vector, u and v are scalar control

and disturbance, respectively; y is the scalar output, tf is
the prescribed final time instant; sufficiently smooth vector
functions f(x), g1(x), g2(x) and scalar function h(x) of
suitable dimensions are defined on a domain D ⊆ R

n,
containing the origin.

Let ti ∈ (t0, tf ], i = 1, . . . , K, and (aj , bj) ⊂ [t0, tf ], j =
1, . . . , L, be prescribed time instants and non-intersecting
intervals, such that at least one of the conditions tK = tf ,
bL = tf , is satisfied. Let ỹ(t) t ∈ [t0, tf ], be the function,
continuous on each interval [aj, bj ], j = 1, . . . , L. Let define
the cost functional

J = G(x(·)) =
K
∑

i=1

[y(ti)− ỹ(ti)]
2 +
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�
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[y(t)− ỹ(t)]2 dt. (3)

Let T =
L
�

j=1

(aj , bj) and ζ(t) be an indicator function of T :

ζ(t) =

�

1, t ∈ T
0, t /∈ T

(4)

Let χ([a, b]) be the number of the moments ti ∈ [a, b].
Define the measure

µ([a, b]) =

b
�

a

ζ(t)dt + χ([a, b]). (5)

Then the functional (3) can be rewritten in a form of a
Lebesgue-Stilties integral

G(x(·)) =

�

[0,tf ]

[y(t)− ỹ(t)]2 dµ(t), (6)

Robust Tracking Problem (RTP). For any ζ > 0 and
for a given ν > 0, to construct a feedback strategy uζν(t, y)
such that

G(xζν (·)) ≤ ζ, (7)

for any v(t) ∈ L2[0, tf ], satisfying
tf
�

0

|v(t)|2dt < ν, (8)

where xζν(t) is a solution of (1), generated by uζν(t, y)
and v(t), yζν(t) = h(xζν(t)); L2[t0, tf ] denotes the space
of square-integrable functions f(·) : [t0, tf ] → R.

3. SOLUTION

3.1 Feedback Linearization

In this paper, for the sake of simplicity, it is assumed that
the system (1) has the full relative degree n both with
respect to the control and to the disturbance, yielding
that its exact feedback linearizability. Namely, define the
coordinate transformation

z = T (x) =











h(x)
L1
fh(x)
...

Ln−1
f h(x)











, (9)

where

L0
fh(x) = h(x), Lk

fh(x) =

n
�

i=1

∂Lk−1
f h(x)

∂xi

fi(x), (10)

are the Lie derivatives (Yano (1957)) of h(x) with respect
to f(x). By (9), the original system (1) becomes

ż1 = z2,
ż2 = z3,

. . .
żn−1 = zn,
żn = a(x(t)) + b(x(t))u(t) + c(x(t))v(t),

(11)

where
a(x) = Ln

fh(x), (12)

b(x) = Lg1L
n−1
f h(x) �= 0, (13)

c(x) = Lg2L
n−1
f h(x) �= 0. (14)

The output (2) becomes

y = z1. (15)

Thus, by denoting

U(t) = a(x(t)) + b(x(t))u(t), (16)

V = c(x(t))v(t), (17)

the system (1) becomes

ż = Az +BU +BV, z(0) = T (x0), t ∈ [0, tf ], (18)

where

A =













1 0 0 . . . 0 0
0 1 0 . . . 0 0

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0













, B =









0
0
...
1









. (19)

3.2 Auxiliary LQDG

Consider an auxiliary LQDG for (18) with the cost func-
tional

Jαβ = Jαβ(U(·), V (·)) =

�

[0,tf ]

[z1(t)− ỹ(t)]
2
dµ(t)+

α

tf
�

0

U2(t)dt− β

tf
�

0

V 2(t)dt, (20)

to be minimized by U and maximized by V . The function
ỹ(t) and the measure dµ(t) in (20) are the same as in (6);
α, β > 0 are control and disturbance penalty coefficients.
Due to (2) and (9), the first term of (20) coincides with
G(x(·)).

If the penalty coefficients of (20) satisfy

α ≤ β, (21)

then, due to Shinar et al. (2008), the LQDG (18), (20) is
solvable and the minimizer’s optimal strategy is

U0
αβ(t, z) = −

1

2α
BT l0αβ(t, z), (22)

where

l0αβ(t, z) = ΦT (tf , t)
�

2Rαβ(t)Φ(tf , t)z + rαβ(t)
�

, (23)

Φ(t, τ) is the fundamental matrix of the homogenous
equation ż = Az. The matrix function Rαβ(t) and the
vector function rαβ(t) satisfy the impulsive differential
equations

dR

dt
= −RQαβ(t)R− ζ(t)S(t). (24)

R(tf + 0) = 0, R(ti + 0)−R(ti) = −S(ti), (25)

dr

dt
= −Rαβ(t)Qαβ(t)r + 2ζ(t)ỹ(t)XT (t, tf )D

T , (26)

r(tf +0) = 0, r(ti+0)−r(ti) = 2ỹ(ti)Φ
T (ti, tf )D

T , (27)

where i = 1, . . . , K, ζ(t) is defined by (4),

Qαβ(t) =

�

1

β
−

1

α

�

Φ(tf , t)BBTΦT (tf , t), (28)

S = ΦT (t, tf )D
TDΦ(t, tf ), (29)

D = [1, 0, . . . , 0]. (30)
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