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Abstract: This paper investigates the problem of making an underactuated marine vessel follow
an arbitrary differentiable Jordan curve. A solution is proposed which relies on a hierarchical
control methodology involving the simultaneous stabilization of two nested sets, and results in
a smooth, static, and time-invariant feedback. The methodology in question effectively reduces
the control problem to one of path following for a kinematic point-mass. It is shown that as long
as the curvature of the path is smaller than a quantity dependent on the mass and damping
parameters of the ship, path following is achieved with uniformly bounded sway speed.
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1. INTRODUCTION

This paper presents a control methodology for under-
actuated marine vessels with two control inputs (thrust
and torque) and three degrees-of-freedom (position and
rotation). The control specification is path following: make
the ship approach a path and follow it with nonzero speed
without requiring any time parametrization. While in the
trajectory tracking problem one would seek to make the
ship follow a moving reference point, in path following one
wants to stabilize a suitable controlled-invariant subset
of the state space (see Nielsen et al. (2010)), and no
exogenous signal drives the control loop.

The path following and trajectory tracking problems have
been the subject of significant research in the context of
marine vessels. We mention some of the relevant references.
Straight-line/waypoint path following for underactuated
vessels is considered in Fredriksen and Pettersen (2006),
Bgrhaug et al. (2008), Oh and Sun (2010), and Aguiar
and Pascoal (2007). Path following for curved paths is
considered in Do and Pan (2006) where the path is
parametrized by a path-variable that propagates along
the path with a velocity dependent on the desired vessel
velocity. The papers Aguiar and Hespanha (2007) and
Skjetne et al. (2005) investigate the trajectory tracking
problem. Path following of curved paths for underactuated
vessels using a Serret-Frenet path frame is considered in Li
et al. (2009); Moe et al. (2014) and Lapierre and Soetanto
(2007).
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The papers listed above consider path following of straight-
line paths or path-following/trajectory-tracking of curved
paths that are parametrized by time or a path variable.
To the best of our knowledge, in the context of marine
vessels, the problem of finding a smooth, static, and time
invariant feedback solving the path following problem for
general unparametrized paths remains open. In this paper,
we make an initial step towards its solution. Our approach
leverages the hierarchical control methodology presented
in El-Hawwary and Maggiore (2013), a methodology which
has been used in Roza and Maggiore (2014) to derive
almost global position controllers for underactuated flying
vehicles. The idea is to first design a path following control
law for a kinematic point-mass. Then from this feedback
extract a desired heading angle, and view it as a reference
for a torque controller. Carrying out these two separate
design steps corresponds to the simultaneous stabilization
of two nested subsets of the state space, and the a
reduction theorem from El-Hawwary and Maggiore (2013)
is used to show overall stability. In particular, we show that
if the curvature of the path is not too large in relation to a
constant that depends on the ship’s parameters, then the
sideways velocity is uniformly bounded.

The challenge in solving the path following problem for
marine vessels is that, due to the presence of sideways
motion, in order to stay on a curved path the ship cannot
head tangent to it, and its angle of attack relative to the
path’s tangent depends on the sway speed.

2. PRELIMINARIES AND NOTATION

In this paper we adopt the following notation. We denote
by S' the set of real numbers modulo 2w, with the
differentiable manifold structure making it diffeomorphic
to the unit circle. If ¢ € S', Ry, is the rotation matrix
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Ry = [t o]

If f(z,y) is a differentiable function of two scalar variables,
we denote by 9, f, 9, f the partial derivatives with respect
to x and y, respectively. Similarly, we define (‘ﬁy f o=
0.0y f, and similarly for the other second-order partial
derivatives. If f : R™ — R™ is a differentiable vector
function and p € R", df, is the m x n Jacobian matrix of
f at p. If T is a closed subset of a metric space (M, d) and
x € M, then we denote by ||z||a the point-to-set distance
of x to M, ||z||am = infyen d(z — y).

The following stability definitions are taken from EI-
Hawwary and Maggiore (2013). Let ¥ : x = f(x) be a
smooth dynamical system with state space a Riemannian
manifold X with associated metric d. Let ¢(¢, xo) denote
the local phase flow generated by ¥, and let Bs(z) denote
the ball of radius ¢ centred at x € M.

Consider a closed set I' C X which is positively invariant
for ¥, i.e., for all xo € T, ¢(t, xo) € T for all ¢ > 0 for which
@(t, xo0) is defined. Then we have the following stability
definitions taken from El-Hawwary and Maggiore (2013).

Definition 1. The set I is stable for ¥ if for any € > 0,
there exists a neighborhood N (I') C X such that, for all
xo € N(T), é(t,x0) € Be(T'), for all ¢ > 0 for which
&(t, xo) is defined. The set T is attractive for ¥ if there
exists a neighborhood N(I') C X such that for all xo €
N (D), limi— o0 [|¢0(¢, X0)|lr = 0. The domain of attraction
of T is the set {xo € X : lim;— o ||P(¢, X0)|[r = 0}. The
set I' is globally attractive for ¥ if it is attractive with
domain of attraction X. The set I is locally asymptotically
stable (LAS) for ¥ if it is stable and attractive. The set
T' is globally asymptotically stable for ¥ if it is stable and
globally attractive. If 'y C I's are two closed positively
invariant sets, then I'y is asymptotically stable relative to
T’ if I'; is asymptotically stable for the restriction of ¥ to
T. System X is locally uniformly bounded (LUB) near T’
if for each x € T" there exist positive scalars A and m such
that (R4, Bx(z)) C B (x). A

The following result is key in the development of this
paper.

Theorem 1. (El-Hawwary and Maggiore (2013)). Let Ty,
Ty, Ty C Ty C &, be two closed sets that are positively
invariant for ¥ and suppose that I'; is not compact. If

(i) Ty is asymptotically stable relative to T's,
(ii) Iy is asymptotically stable, and
(iii) ¥ is LUB near I'y,

then I'; is asymptotically stable for 3.
3. THE PROBLEM

Consider the 3-degrees-of-freedom vessel depicted in Fig-
ure 1, which may describe an autonomous surface vessel
(ASV) or an autonomous underwater vehicle (AUV) mov-
ing in the horizontal plane. We denote by p € R? the
position of the vessel on the plane and ¢ € S' its heading
(or yaw) angle. The yaw rate 1 is denoted by r.

We attach at the point p of the vessel a body frame aligned
with the main axes of the vessel, as depicted in the figure,
with the standard convention that the z-axis points into

Py
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Fig. 1. Illustration of the ship’s kinematic variables.

the plane (towards the sea bottom). We represent the
velocity vector p in body frame coordinates as (u, v), where
u, the longitudinal component of the velocity vector, is
called the surge speed, while v, the lateral component, is
called the sway speed. Finally, the control inputs of the
vessel are the surge trust T, and the rudder angle T,.
In terms of these variables, the model derived in Fossen

(2011) is
L 0

Mv+ C(v)v+ Dv =Bf

with n = [p,¢]7, v = [u,v,7]T, and f = [T, T.]". The
matrices M, D, and B are given by

M £ |:m011 mozz m023} , D = |:d(1)1 d(2)2 d(2)3:| , B = |:b(1)1 5(2)2:|

0 ma3 ma33 0 d32 dss 0 bs2
with M = M'" > 0 the symmetric positive definite
inertia matrix including added mass, D > 0 is the
hydrodynamic damping matrix, and B is the actuator
configuration matrix. The matrix C(v) is the matrix of
Coriolis and centripetal forces and can be obtained from
M (see Fossen (2011)). We place the origin of the body
frame at a point on the center-line of the vessel with
distance € from the centre of mass. Following Fredriksen
and Pettersen (2006), assuming that the vessel is starboard
symmetric, there exists € such that the resulting dynamics
have mass and damping matrices satisfying this relation:
M™'Bf = [7,,0,7,]T. Thus, with this choice of origin
of the body frame, the sway dynamics become decoupled
from the rudder control input, making it easier to analyze
the stability properties of the sway dynamics. Using this
convention, the model of the marine vessel (1) can be
represented as
8
L

u} _ [Fu(v,r) — g 4o,

=

p:

0 X (u)r —i—mil/l(u)v )
=

7= F.(u,v,7) + 70
The functions X (u) and Y (u) are linear. Their expressions
are given in Appendix A together with those of F}, and Fi..

Denoting by x := (p,u, v, ¥, r) the state of the vessel, the
state space is X :=R?2 x R x R x S' x R.

Assumption 1. We assume that Y (u) < 0 Yu € [0, Vipax]-

This is a realistic assumption, since Y () > 0 would imply
that the sway dynamics are undamped or unstable when
the yaw rate r is zero.
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