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Abstract: We present a method to construct a semantic map of an apple orchard using a
LIDAR and a camera rigidly attached to each other. The system is able to capture the map as
a standalone sensor which is light-weight and can be mounted on a variety of platforms.

At the geometry level, we present a new method to associate image features captured by the
camera with 3D points captured by the LIDAR. We then use this method to register 3D point-
clouds onto a common frame. We show that our association method yields superior registration
performance compared to common methods which work in indoor or urban settings.

At the semantic level, the apples are identified as distinct objects. Their locations and diameters
are extracted as relevant attributes. As an example, a semantic map of an orchard row is

constructed.
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1. INTRODUCTION

Robotics and sensing technologies are finding increasing
application in agricultural sciences and practices. In these
applications, data collected by sensors is turned into
information at various levels. At a very basic level, the
sensor data acquired from a mobile platform is mapped
directly to relevant information. A typical example is
the mapping of aerial images to Normalized Difference
Vegetation Index (NDVI) tables based on multi-spectral
color and intensity data. At the next level, geometric
maps are built as an intermediate step. From these maps,
information such as crop height can be directly estimated,
for example for phenotyping applications (See Li et al.
(2014) for an overview).

In order to turn sensor data into actionable information,
what is ultimately needed is a ”"semantic map” in which
relevant objects (plants, fruits, branches, etc.) and their
relevant attributes (size in three dimensions, color across
multiple spectra, etc.) have been identified. In this paper,
we present a system which can acquire both a geometric
map and a semantic map of an orchard using only camera
and LIDAR images (without additional information from
GPS or inertial sensors).

Our main technical contribution for the geometric level is
a novel method for accurately associating LIDAR points
with image features which allows for the quick registration
of LIDAR point clouds that can be used to reconstruct
the plant stature, shape, and canopy density. Rapid,
efficient three-dimensional plant canopy reconstruction
has applications for phenotyping in research and informing
plant canopy management practices such as pruning and
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fruit thinning. Geometric reconstruction is a challenging
problem because a close-up view of a tree has numerous
discontinuities. Therefore, two pixels close to each other
in the image can be far in space. At the semantic level,
our system is capable of identifying apples and extracting
information about their locations, diameters and count
which can provide rapid phenotpying for fruit yield, yield
efficiency, and fruit distribution in the canopy relative to
canopy density. We show an example of such semantic map
constructed from imagery collected in an apple orchard. In
the next section, we start with an overview of the related
work.

2. RELATED WORK

Semantic mapping can be very useful in agricultural ap-
plications by providing relevant information to farmers,
growers or biologists. For speciality farms in particular,
it is important to locate individual trees and fruits, and
estimate their sizes so as to calculate useful yield param-
eters. The topic of semantic mapping has been studied
extensively in the context of mobile robots (Kostavelis
and Gasteratos (2015)). In this paper, we restrict ourselves
to work directly relevant to agriculture. Weiss and Biber
(2010) presented a semantic place classification system for
outdoor agricultural robots. In contrast to our approach
they used high resolution RTK-GPS devices for construct-
ing the maps. Zhang et al. (2014) presented a landmark-
based method for creating a local map of the environment
using a LIDAR. Their system is mounted on a ground
vehicle. They use the vehicle position determined by en-
coder odometry to register the LIDAR points. In contrast,
we utilize the image features from our LIDAR - camera
system to register the LIDAR points. Das et al. (2015)
presented a sensor suite consisting of a laser range scanner,
multi-spectral cameras, a thermal imaging camera, and
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Fig. 1. Left: Camera+LIDAR system used for data cap-
ture Right: The system mounted on a ground vehicle.

navigational sensors. They presented techniques to extract
four key data products - plant morphology, canopy volume,
leaf area index, and fruit counts using the sensor suite.
They build a map of the rows using the thermal sensor
and registered the point clouds using the navigational
sensors. Bargoti et al. (2015) presented a pipeline for trunk
detection in trellis structured apples orchard. Similar to
the previous approaches, they also depend on odometry
and GPS for registering the LIDAR data. In contrast,
we register the LIDAR data completely based on visual
features and focus on extracting semantic information such
as fruit location and size. In the next section, we start with
a description of our system.

3. SYSTEM AND DATA ACQUISITION

A camera (GARMIN Virb XE) and LIDAR (Velodyne
VLP-16) fusion system is used for data collection (Fig 1).
The camera is calibrated using the method of Zhang
(2000). As the LIDAR reflection is not visible on the
camera image, the relative pose of the two sensors needs to
be calculated. The method of Park et al. (2014) is used to
calibrate the camera and LIDAR. The images and point
clouds are synchronized using the time stamps provided
by both devices.

The system is powered with a dedicated power pack (Qi-
infinity Powergrid 34,200mAh). The system is light enough
(2.16 lbs without battery and 5.37 1bs with battery) so that
it can be mounted on various platforms. It is also stand-
alone and does not need to be interfaced with additional
sensors on the platform. This makes data acquisition very
convenient.

In our case, the sensor system was mounted on a ground
vehicle that drives in between orchard rows while the
system captures images and the LIDAR points of the trees.
The ground vehicle is driving at a relatively constant speed
( 5mph ) to avoid jerky motion that deteriorates the image
and LIDAR data quality. The slow motion also ensures
enough feature correspondences among images to recover
the motion robustly.

4. GEOMETIC RECONSTRUCTION
Since our system acquires 3D point clouds with LIDAR,

data acquisition at the geometry level is performed di-
rectly.

Fig. 2. Tterative Closest Point registers frames of LIDAR
points in a curved way.

However, to register any two point clouds captured by the
LIDAR onto a common frame, sensor motion needs to be
estimated. This registration problem can be formulated as
follows:

Suppose the sensor system moved from point A to B,
where the respective LIDAR centers are at [y and l5. The
resulting image “I,"2 T and laser points " P2 P € R? are
with respect to the local coordinate frames [y and I, which
satisfies the following equation:

"P = R”P+" t, + N (1)

where 'R € R3*3, Lt € R® are the rotation matrix
and translation vector respectively and N € R3 is the
noise vector. The goal of registration is to compute the

transformation matrix:

Without noise, if we can find four pairs of corresponding
LIDAR points between two frames, we can solve for the
transformation matrix directly (assuming that any three
points are not collinear). However, in practice, since the
sensors are moving forward, the LIDAR data is sparse and
the scene has many occlusions, it is nearly impossible to
acquire the same point in two consecutive images.

When the correspondences between point clouds are un-
known, the most common technique for aligning two sets
of point clouds is the Iterative Closest Point(ICP) method
(Besl and McKay (1992)). ICP iteratively estimates point
correspondences and transformation matrix until a con-
vergence criterion is met. For our data set, ICP failed
as shown in Fig 2. In each frame, LIDAR points are
relatively sparse and recorded vertically. The vehicle is
moving parallel to the scene which results in fan-shaped
data-points. Maximizing alignment with ICP results in
curved registration.

We observed that we can find accurate image correspon-
dences using robust features estimator such as SIFT (Lowe
(2004)). Therefore, an alternative approach is to use image
features to find correspondences across frames. If we can
associate depth values to these features then we can com-
pute the transformation T directly. In the next section, we
turn our attention to this problem.
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