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Abstract: Day-to-night heat storage is often practiced in cold-climate greenhouses. It is suggested to 
manage the heat storage by considering the co-state (virtual value) of the stored heat in the on-line 
optimization of the greenhouse environment. Examples worked out for a periodic square-wave weather 
show that a properly selected constant co-state can produce an optimal solution to the control problem. 
The optimal co-state is shown to change with time over the year. Maximizing the performance criterion 
can also be achieved by minimizing the time that the heat buffer is either completely empty or completely 

full. 
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1. INTRODUCTION 

 

In cold-climate locations, where natural gas is burned during 
the day to enrich greenhouses with carbon dioxide, water 
tanks (buffers) are often used to store the extra daytime heat 
for heating at night (de Zwart, 1996, Salazar et al., 2014). 
There are several possible configurations of these systems, 
but the focus of the present study is not on a particular 
configuration but rather on a methodology to optimally 
control such systems. The general idea is that the co-state of 
the stored heat, namely a virtual value attached to it, may be 
used to guide the instantaneous control decisions. If the co-
state value is high, the system has an incentive to keep the 
buffer full, and vice versa if the co-state is low. A 
continuously empty or continuously full buffer is obviously 
useless as a storage device, meaning that the optimal co-state 
should have some intermediate value. It should be selected 
such that the daytime supply of CO2, and hence the heat 
available for storage, is matched, as best as possible, with the 
nighttime heat requirement. As the CO2/heat requirement 
ratio depends on season (high in summer and low in winter), 
the optimal co-state is expected to vary with time. In this 
study we explore the solution for just one (simplified) system 
configuration and a few square-wave periodic weather 
sequences. A somewhat similar approach to CO2 enrichment, 
but using a different nomenclature, has been put forward by 
Aikman et al. (1997), who attached a ‘dummy’ value to CO2. 
 
 

2.  MODEL 
  

2.1 Heat and CO2 balances 
 

A simplified schematic of the system is presented in Fig. 1. It 
involves three compartments: Greenhouse (including crop), 
gas-fired boiler, and water heat-storage (buffer). The only 

state variable to be considered here is the stored heat, S .  
 

 

Fig. 1: Schematic representation of a greenhouse system with 

a gas fired boiler producing heat, bH , and carbon dioxide, 

bE . Some of the heat, baH  and saH , is expelled or lost to 

the atmosphere, some, sH , is transferred to a water-filled 

heat-storage (buffer), and the balance, gH , heats the 

greenhouse. RH  is greenhouse solar heating ( oRHR RH  ), TH  

is total greenhouse heat loss, and VE  is CO2 loss by 

ventilation. 

 
The model consists of three compartment balances: (1)  heat-
storage heat-balance, (2)  greenhouse heat-balance, and  (3) 
greenhouse CO2-balance; Two junction balances: (4)  3-way 
junction heat-balance, and (5)  4-way junction heat-balance; 
and two process 'balances': (6)  CO2/heat equivalence 

)( bHEb HE  , and (7)  Storage heat-loss 

     )2/1( sssssa HHabsH  . Of these,  the first is 

an ordinary differential equation,  
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sHtS d/d  ,    (1) 

 
and the other six are algebraic expressions, to be used as 
constraints on the solution. 

2.2 Control variables 

Altogether there are 10 fluxes (Fig. 1) and 6 (algebraic) 
constraints, leaving 4 fluxes free as control variables. A 

sensible choice would be the ventilation rate, Q (affecting 

VE  and TH ), and the heat fluxes bH , bsH  and sH . 

Whenever the heat buffer is either empty or full, namely 

0d/d tS  ( S  is on its bound), the charging flux, sH , must be 

zero. This removes sH  from the control vector, reducing by 

one the number of variables to be determined. The control 

variables are constrained as follows: cQQ 0 , 

cbb HH ,0  , bbs HH 0  and 
bssscs HHH  , , 

where the subscript c  indicates the installed capacity. There 

is also a constraint on the stored heat, namely, cSS 0 . 

 

The control fluxes Q  and bH  are associated with unit costs, 

indicated respectively by Qu  and Hu . All other control fluxes 

may be considered cost-less, having been paid for by the cost 

of bH . The remaining two fluxes, baH  and 
gH , can be 

derived from the control variables and the constraints.  
 

 

2.3 Crop growth 
 

In this study the crop (such as tomato) is assumed to be 
indeterminate and mature. Any additional growth (of leaves 
and fruit) is eventually harvested or pruned, such that the 
crop canopy remains essentially unchanged with time. Dry 
matter is, therefore, divided into three parts: (1) the 
‘unchanging’ plants, represented by M ,  (2) the (cumulative) 
pruned leaves (plus stem and root elongation), and (3) the 
(cumulative) harvested yield.  
 

The rate of growth is formulated as  
 

   MfTCLhYFG iii  ,,  ,  (2) 
 

where G  and Y  are the whole-plant and saleable fruit 

growth-rates; iL , iC and iT  are indoors light intensity, CO2 

concentration and temperature; h   is growth rate per sunlit 

(projected) canopy area, and f is the sunlit leaf area index. 

The components F  and Y  are assumed to be proportional to 

each other, such that GY  .  
 

Further details of the model are similar to simplified models 
found in the literature (Aikman et al., 1997, Eq. 4; Seginer, 
2003, Eqs. 23 to 26; Thornley & France, 2007 p. 290): The 
growth rate is the difference between gross photosynthesis 
and respiration:  
 

     iiiiii TrCLpTCLh  ,,,  ,   (3) 

where 

 
iiLE

iiLE
ii

CL

CL
CLp





,     (4) 

    riri TTrTr  exp     (5) 
 

and LE ,  , rr , rT  and   are constants, estimated here 

from literature.  
 
There are only two (temperature) constraints on the crop 

environment, namely maxmin TTT i  . There are no upper 

bounds on light and CO2 concentration. 
 
2.4 Greenhouse environment 

 
A simplified greenhouse model is considered. In particular, 
terrestrial (long wave) radiation and latent heat fluxes are not 
explicitly specified, and heat capacities (except in the heat 
buffer) are ignored. The outdoors conditions are given in 

terms of just solar radiation, oR , air temperature, oT , and 

carbon dioxide concentration, oC .  

 

Indoors light is a constant fraction of oR : oRLi RL  . The 

indoors temperature is obtained by solving the greenhouse 
heat balance equation,  
 

    oiT TTBBIQcUH  /1  (6) 

 

where U ,  , c , I  and B  are considered to be constant ( B  

differs between day and night). The indoors CO2 
concentration is determined by solving the CO2 balance 
equation,  
 

0 GEE Vb .    (7) 

 
2.5 Performance criterion and Hamiltonian 

 
A period of time (e.g., one week) is considered, during which 
the environmental daily cycle repeats itself. The performance 

of the system, J , is measured in terms of the value of dry 

matter harvested as fruit, minus the cost of control, over one 
daily cycle, namely 
 

   
day bHQY tHuQuYuJ d ,   (8) 

 

where Yu  is the price of tomatoes (in terms of its carbon 

content). Capital and labor costs are not considered. They are 
taken to be independent of the control. The Hamiltonian, H   
(Pontryagin, 1962), to be maximized at each point in time, is  
 

bHQYS HuQuYutSΛ  d/dH ,  (9) 

 

where SΛ  is the co-state of S . In general, the co-state 

changes with time according to 

 

StΛS  /d/d H .    (10) 

 
In the present problem the Hamiltonian is not a function of 

the state. Hence the co-state, SΛ , is a constant, at least as 
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