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

1. INTRODUCTION 

The usual method for robot identification is based on the 

Least-Squares (LS) technique and the Inverse Dynamic 

Identification Model (IDIM). The IDIM indeed allows 

expressing the input torque as a linear function of the 

physical parameters thanks to the modified Denavit and 

Hartenberg (DHM) notation. Therefore, the IDIM-LS method 

is a really practical solution, which explains its success, see 

(Gautier, Janot & Vandanjon 2013) and the references given 

therein. However this method needs a well-tuned band pass 

filtering to get the derivatives of the joint positions. It 

requires a good a priori knowledge of the system to tune 

adequately the filters. That may be an issue for the early tests 

of a system, especially if there is no access to the key design 

parameters, such as a robot bought "off-the-shelf".   

The goal of this article is twofold: first, to make clear the 

usual process of robot identification for people not related to 

this field; second, to show how this process can be improved. 

Robot identification may indeed be difficult for people 

coming from the general field of system identification, since 

the techniques rely on a priori knowledge of the system. For 

this work, the author designates by "a priori knowledge" the 

values of the parameters, which are known or guessed prior 

to the identification. In any case, the model structure is 

assumed to be known. 

As it will be seen, the main part of the work consists in 

differentiating the position signal to construct the regressors 

(see Section 3 for a proper definition) for the LS method. In 

many fields, the problem of differentiating numerical signals 

was raised. In the domain of continuous-time system 

identification, it has been successfully dealt by different 

techniques like the generalized Poisson moment functional 

(GPMF) in (Rao & Unbehauen 2006), the State Variable 

Filters (SVF) in (Mahata & Garnier 2006) or the Refined 

Instrumental Variable (RIV) in (Garnier et al. 2007). For 

further reading on the topic, see e.g. (Garnier, Mensler & 

Richard 2003). Nevertheless, those attractive methods require 

either the system to be linear in the states, in order to have a 

self-tuned filtering (RIV), or the user to provide the 

bandwidth for the filter (GPMF and SVF). As it will be seen, 

for a robot, the regressors are non-linear in the states. Hence, 

those techniques do not fulfil the requirements of our study. 

It would be worth to look at other fields to find a technique 

which does not require a priori knowledge of the system and 

which can handle non-linearities in the states.  

The plan of this article is as follows. Firstly, the tools and 

methods considered are presented. Secondly, the results in 

simulation of numerical differentiation and parameters 

identification are summarized. Afterwards, the techniques are 

compared with experimental data. Then, two cases are 

considered: first, high precision position sensor is used; 

second, the precision is deteriorated. Finally, concluding 

remarks are expressed. 

2. CLOSED-LOOP SYSTEM IDENTIFICATION 

Traditionally, the closed-loop identification methods are 

divided in three main categories, see e.g.  (Forssell & Ljung 

1999). The first one, called direct approach, consists in 

identifying the open-loop system without taking into account 

the feedback loop. As it will be seen, it requires a careful 

process of the data to avoid biased estimation. The second 

category is the indirect approach. In this case, the knowledge 

of controller, or at least of the reference signal, is required to 
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The plan of this article is as follows. Firstly, the tools and 

methods considered are presented. Secondly, the results in 

simulation of numerical differentiation and parameters 

identification are summarized. Afterwards, the techniques are 

compared with experimental data. Then, two cases are 

considered: first, high precision position sensor is used; 

second, the precision is deteriorated. Finally, concluding 

remarks are expressed. 

2. CLOSED-LOOP SYSTEM IDENTIFICATION 

Traditionally, the closed-loop identification methods are 

divided in three main categories, see e.g.  (Forssell & Ljung 

1999). The first one, called direct approach, consists in 

identifying the open-loop system without taking into account 

the feedback loop. As it will be seen, it requires a careful 

process of the data to avoid biased estimation. The second 

category is the indirect approach. In this case, the knowledge 

of controller, or at least of the reference signal, is required to 
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identify the closed-loop system. The last category is the joint 

input-output approach, which consists in using open-loop 

techniques by considering at the same time the input and the 

output as an augmented output of the whole closed-loop 

system. 

As it will be presented in the next section, robot identification 

usually relies on IDIM-LS and belongs to the direct 

approach. Recently, the Instrumental Variable method has 

proven to be interesting improvement, see e.g. (Janot, 

Vandanjon & Gautier 2014) or (Brunot et al. 2015). This last 

method identifies the open-loop system but it relies on the 

simulation of the whole closed-loop system. This article 

focuses on direct approach methods in order to deal with 

robots whose the controller may be unknown. 

3. LEAST-SQUARES for ROBOT IDENTIFICATION 

3.1 Inverse Dynamic Model 

If a robot with n  moving links is considered, the  1n  

vector ( )tτ  contains the inputs of those links, which are the 

applied forces or torques. The signals ( )tq , ( )tq  and ( )tq  are 

respectively the  1n  vectors of generalized joint positions, 

velocities and accelerations. With respect to the Newton's 

second law it comes out: 

    (t) (t) (t) (t), (t) M q q τ N q q   (1) 

where,  (t)M q  is the  n n  inertia matrix of the robot, and 

 (t), (t)N q q  is the  1n  vector modelling the disturbances 

or perturbations. Those perturbations contain the friction 

forces, gravity effects and other non-linearities depending on 

the studied robot. Experience has shown that those 

disturbances are, in the vast majority of cases, linear in the 

parameters, but not in the states. Therefore, it appears to be 

very convenient for the identification to consider the Inverse 

Dynamic Model (IDM). The IDM is described by (2), where: 

the input is the dependent (or observation) variable; φ  is the 

 n n  matrix of regressors  (or independent variables); θ  

is the  1n   vector of dynamic parameters to be estimated. 

  ( ) (t), (t), (t)t τ φ q q q θ   (2) 

3.2 Least-Squares Equation 

The model described by (2) can straightforwardly be 

extended to the vector-matrix form: 

 

 

 
 

1

, ,m LS

s

t

N

 
    
  

τ

u X q q q θ e

τ

  (3) 

where, mu  is a  1tN   vector constructed with the measured 

signals, X  is a  tN n   matrix whose each column is 

called a  regressor and LSe  is a  1tN   vector of error terms, 

with t sN N n   and sN  the number of sampled points 

considered. It is assumed that X  is full rank, i.e. 

 rank nX  , and that 
tN n , to have an over-

determined system of equations.  

From (3), the Least-Squares (LS) estimates and their 

associated covariance matrix are given by: 

   1
ˆ T T

LS m


θ X X X u   (4) 

   1
2 T

LS


Σ X X   (5) 

 
¨2

2 1 ˆˆ
m LS

tN n
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
u Xθ



   (6) 

From a theoretical point of view, the LS estimates (4) are 

unbiased if the error has a zero mean and if the regressors are 

uncorrelated with the error, see relations (7). 

   0LSE e            0T T

LS LSE E E       X e X e  (7) 

The covariance matrix given by (5) assumes that X  is 

deterministic and that 
LSe

 
is homoscedastic i.e. 

  2var ( )LS t e  , for each t . It is assumed that those two 

assumptions hold. However, systems considered in this 

article operate in closed-loop. In that case, the assumption 

given by (7) does not hold (Van den Hof 1998). This partly 

explains why a tailor-made pre-filtering of the data is done in 

practice. 

3.3 States Estimation by Tailor-Made Filtering 

To build the regressors matrix X , the velocity and the 

acceleration are estimated from the measured position. As 

described in (Gautier 1997), the classical technique used in 

robots identification is divided in three sequential steps. 

Those steps are influenced by the sampling frequency, noted 

s . This frequency is usually chosen 100 times larger than 

the natural frequency of the highest mode which must be 

modelled, 100dyn s  , in order to satisfy the Nyquist rule. 

Step 1.  The first step consists in reconstructing the missing 

data, or, more practically, to compute the derivatives of the 

measured position. It is usually done thanks to numerical 

differentiation (centred scheme). Prior to this, to avoid 

amplification of the noise at high frequency, a low-pass 

filtering is undertaken. This filter is applied forward and 

backward to avoid phase lag introduction. It is a Butterworth 

filter, whose order is 2dn  . Where dn  is the desired 

derivative order, which is usually equal to two. The issue is 

to choose the cutting frequency of the filter, q , to have 

ˆ( ) ( )q t q t  and ˆ( ) ( )q t q t  over the frequency range of the 

system. The rule of thumb is to take it as 2 10dyn q dyn    . 

It obviously requires knowledge about the system.  

Step2. A filter is then applied to all signals. The objective is 

to remove high frequencies perturbations in the dependent 

variable measurements (generally, the input torque). To be 
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