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Abstract: Ideally, ironless linear motors can reach very high precision with simple classical commu-
tation using three-phase sinusoidal currents. However, in reality, due to deviations from the design
parameters, there are various parasitic forces and torques for which the classical commutation cannot
compensate. An alternative solution is to formulate the commutation as an optimization problem and
solve it numerically. This paper proposes a new optimization algorithm which is computationally
efficient and well-suited to the commutation problem in the sense that it is capable of compensating
for parasitic forces and torques while minimizing the dissipated power in the motors. Simulation results
with a finite element method model are presented to demonstrate the effectiveness of the proposed

commutation algorithm.
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1. INTRODUCTION

Ironless linear motors (ILMs), also known as coreless linear
motors, are widely used in precision positioning systems due
to their extremely high precision. An ideal ILM produces only
propulsion force. There is no parasitic force and torque in non-
driving directions due to symmetrical stator design. The desired
propulsion force can be obtained accurately with low ripple just
by using simple three-phase sinusoidal currents, since there is
no cogging force.

Due to this designed high precision, there are very few research
works on compensation for parasitic effects in ILMs in the liter-
ature. Most of the research focuses on optimizing the topology
design (Ferkova et al., 2008; Tavana et al., 2012; Li et al., 2012,
2013; Zhang et al., 2014). However, in reality, there will always
be deviations from the design parameters due to manufacturing
tolerances. These deviations result in various parasitic forces
and torques which need to be compensated by control. Some
control techniques to compensate for the parasitic propulsion
force in ILMs can be found in (Rohrig, 2005, 2006; Li et al.,
2009; Bascetta et al., 2010). Recently, a method to compensate
for both parasitic propulsion force and parasitic normal force
was proposed in (Nguyen et al., 2015). However, in all of the
above-mentioned methods, the parasitic torque is neglected.
The aim of this paper is to develop a feedback linearization
algorithm, which is known as commutation in linear motors
literature, to compensate for parasitic forces and torques in
ILMs simultaneously.

Commutation, or feedback linearization, in linear motors is a
mechanism that calculates the required currents in the coils to
achieve the desired forces and torques. The classical commuta-
tion makes use of three-phase sinusoidal current waveforms,
which results in propulsion force ripples, even in the ideal
case. There are more advanced commutation methods which
can completely eliminate the ripples in the propulsion force.
In general, commutation can be formulated as an optimization
problem which minimizes the dissipated power in the coils,
subject to the constraints that the desired forces and torques

are obtained, and the sum of the currents is zero if the coils are
connected in star configuration. This optimization problem can
be solved using numerical optimization (Meeker, 1996; Lovatt
and Stephenson, 1997; Rohrig, 2003; Ahmed and Taylor, 2006;
Shinnaka and Sagawa, 2007; Ruben and Tsao, 2012; Ahmed
and Taylor, 2015; Moehle and Boyd, 2015), which is in gen-
eral computationally expensive. In the case when the relation
between the force vector and the current vector is linear, this
optimization problem can be solved analytically by eliminating
equality constraints (Rehman and Taylor, 1995; Rohrig, 2005,
2006; Dwari and Parsa, 2008; Ridge et al., 2011), by using
Lagrange multipliers (Wu and Chapman, 2005; Baudart et al.,
2010, 2013), or by using the minimum 2-norm generalized
inverse (van Lierop et al., 2009; Ruben and Tsao, 2012). These
analytical commutation methods can be applied to ideal ILMs,
since the propulsion force is linear with the currents in the coils.

However, in nonideal ILMs where the coils are not exactly in
the center of the air gap, the parasitic forces and torques are
quadratic functions of the current vector due to the presence
of reluctance forces (Nguyen et al., 2015). The commutation
problem therefore becomes a quadratic optimization problem
with quadratic equality constraints. In general, it is difficult to
find an analytical solution and hence numerical methods are
necessary for solving the commutation problem.

A common way to solve a quadratic optimization problem with
quadratic equality constraints is to formulate the set of optimal-
ity conditions, which are known as the Karush-Kuhn-Tucker
(KKT) conditions (Kuhn and Tucker, 1951), and solve these
equations numerically using Newton’s method. This optimiza-
tion approach was used to solve the commutation problems that
involved quadratic equality constraints in (Meeker, 1996; Over-
boom et al., 2015). The disadvantage of this approach is that
it introduces additional optimization variables, i.e. Lagrange
multipliers, which increases the complexity of the problem.
In addition, this approach requires evaluation and storing of
the Hessian matrix. This increases the computation time per
iteration and the amount of memory required, especially for
large-scale problems.
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To reduce the computational load, this paper proposes an op-
timization algorithm which bypasses the optimality conditions
and implements a direct iterative search for the optimum. The
idea is inspired by the fact that the commutation optimization
problem is actually a special type of optimization problems
which searches for the minimum 2-norm solution of an un-
derdetermined system of equations. A well-known method to
find a solution of an underdetermined system of equations is
the generalized Newton’s method (Levin and Ben-Israel, 2001).
However, this method only searches for a feasible solution of
the system of equations.

This paper proposes a new algorithm which searches for the
minimum 2-norm solution of the system of equations. The al-
gorithm is the interpolation between the generalized Newton’s
iteration and a proposed minimum 2-norm iteration. It can be
proved that the proposed algorithm converges locally to the
minimum 2-norm solution of the underdetermined system of
equations. Additionally, the computational cost is low since the
algorithm does not introduce additional optimization variables
and does not require evaluation of the Hessian matrix. The
algorithm is then applied to solve the commutation problem in
nonideal ILMs. Simulation results with a finite element method
(FEM) model are presented to verify the performance of the
proposed algorithm.

The remainder of this paper is organized as follows. Section 2
describes the topology and the analytical model of an ILM. The
commutation problem in ILMs is formulated as an optimization
problem in Section 3. Section 4 presents the proposed numeri-
cal optimization algorithm that can be applied to solve the com-
mutation problem. The simulation results using the proposed
algorithm are shown in Section 5. Section 6 summarizes the
conclusions.

1.1 Notation

Let N denote the set of natural numbers and R denote the set of
real numbers. Let R” denote the set of real column vectors of
dimension n, and R denote the set of real n X m matrices.
For a vector x € R", x; denotes the ith element of x. The Nabla
symbol V denotes the gradient operator. For a vector x € R” and

amapping ¥: R" — R
¥ ¥ ¥

The notation 0,,«,, denotes the n x m zero matrix and /,, denotes
the n x n identity matrix. Let || - |2 denote the 2-norm.

2. IRONLESS LINEAR MOTOR

This section describes the topology and the analytical model of
an ILM.

2.1 Topology

A cross-sectional view of an ILM is shown in Fig. 1. An
ILM contains a stationary part called the stator and a moving
part called the translator. The stator consists of two permanent
magnet arrays mounted on two iron plates. The translator
contains one or multiple sets of three-phase coils placed in the
center of the air gap between the two magnet arrays. The motor
is actuated in the x-direction and produces no force in other
directions in the ideal case.
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Fig. 1. Cross-sectional view of an ironless linear motor.

2.2 Modeling

The main force components in a nonideal ILM are Lorentz
force and reluctance force. The propulsion force Fy, the normal
force F; and the torque 7, can be modeled as (Nguyen et al.,
2016)

Fy = K:(q)i, @)
F.=K:(q)i+1" G:(q)i, 3)
T, = Ki(q)i+i' Gi(q)i, @)
where g is the position vector of the translator:
g=lxd", 5)

i is the vector of the currents through the coils:

= [iAI iBl iC] iANC iBNC iCNJT7 (6)
N, is the number of sets of three-phase coils. Here, i is a
vector of dimension n = 3N,; K:(q), K;(q), Ki(q) are [1 x
3N,] matrices; G;(q), G;(q) are [3N, x 3N,] matrices which are
dependent on the position g of the translator. In equations (2)-
(4), the terms which are linear in i model the Lorentz forces and
torque. The terms which are quadratic in i model the reluctance
forces and torque.

The matrices Ky(q), K;(q), K:(q), G;(q) and G;(q) represent
the relation between the currents in the coils and the resulting
forces and torques. They can be determined from the geometry
of the motor using first principle modeling methods. In this pa-
per, Fourier modeling method is employed since it provides an
analytical model of the motor. The main idea of this modeling
method is to approximate the magnetic source term distribution
by Fourier series. The magnetic field solution is then obtained
by solving Laplace and Poisson equations (Zhu et al., 1993;
Gysen et al., 2010). In order to model the parasitic effects such
as the end effect or the variation in remanent magnetization
of individual magnets, the whole motor length is modeled as
one Fourier period in this paper. Details on Fourier modeling of
ILMs can be found in (Nguyen et al., 2015) and the references
therein.

For brevity, the index (g) will be omitted in the remainder of
the paper.

2.3 Model validation

For validation, the derived Fourier model is compared with the
FEM model. An example motor with the design parameters
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