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Abstract

Residual type a posteriori error estimators are introduced in this paper for an advection–diffusion–reaction problem with a Dirac delta
source term. The error is measured in an adequately weighted W1;p-norm. These estimators are proved to yield global upper and local
lower bounds for the corresponding norms of the error. They are used to guide adaptive procedures, which are experimentally shown to
lead to optimal orders of convergence.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper deals with the advection–diffusion–reaction
equation with a Dirac delta source term. This kind of prob-
lems arise, for example, in modeling pollutant transport
and degradation in an aquatic media if the pollution source
is a single point. In particular, our work is motivated by the
need of an efficient scheme to be used in a water quality
model for the river Bı́o-Bı́o in Chile.

It is simple to show that the solution of this problem
belongs to Lp for 1 6 p <1 and to W 1;p for p < 2. In spite
of the fact that the solution does not belong to H1, this
problem can be numerically approximated by standard
finite elements.

Specially interesting is the case when the advective term
is dominant, as typically happens in real problems. In this
case, the solution of the equation has a strong interior layer
arising from the source point aligned with the velocity
direction. The standard Galerkin approximation usually

fails in this situation because this method introduces non-
physical oscillations.

A possible remedy for this situation is to add to the
variational formulation some numerical diffusion terms to
stabilize the finite element solution. Some examples of
this approach are the streamline upwind Petrov–Galerkin
method (SUPG) (see [6]), the Galerkin least squares
approximation (GLS) (see [10]), the Douglas–Wang
method (see [8]), the unusual stabilized finite element
method (USFEM) (see [11]) and the residual-free bubbles
approximation (RFB) (see [5]). The drawback with most
of these methods is that the amount of numerical diffusion
added to the discretization tends to be large. This means
that the solution layers are not always very well resolved
because the layer zone is artificially wide. Furthermore,
all this stabilization techniques do not consider non-regular
right-hand sides as, for example, a Dirac delta measure.

Due to the nature of the solution, when a strong interior
layer is present, it is convenient to compute the numerical
solution in a well adapted mesh, which should be obtained
by means of an adaptive scheme.

There are not many references in the literature dealing
with a posteriori techniques for this equation. The reason
of this is that most of the standard error estimators involve
equivalence constants depending on negative powers of the
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diffusion parameter, which leads to very poor results in the
advection or reaction dominated cases. An error estimator
which is robust in the sense of leading to global upper and
local lower bounds depending at most on the local mesh
Peclet number has been developed by Verfürth (see
[17,18]). Using these results, Sangalli has analyzed a resid-
ual a posteriori error estimate for the residual-free bubbles
scheme (see [15]). On the other hand, Knop et al. have
developed some a posteriori error estimates using a stabi-
lized scheme combined with a shock capture technique to
control the local oscillations in the crosswind direction
(see [13]). Finally, Wang has introduced an error estimate
for the advection–diffusion equation based on the solution
of local problems on each element of the triangulation (see
[19]). In all these works smooth source terms are consid-
ered. On the other hand, an a posteriori error analysis
has been recently developed in [3] for the Laplace equation
with a delta source term. To the best of the authors knowl-
edge, no a posteriori error analysis has been performed for
the advection–diffusion–reaction equation with a non-regu-
lar right-hand side.

In this paper, we introduce and analyze from theoretical
and experimental points of view an adaptive scheme to effi-
ciently solve the advection–reaction–diffusion equation
with a Dirac delta source term. This scheme is based on
the stabilized finite element method introduced in [11],
combined with an error estimator similar to that developed
in [2,17]. Although the stabilization technique [11] has been
analyzed only for regular right-hand sides, our experiments
show that the numerical scheme is convergent also in our
case. Under appropriate assumptions, we prove global
upper and local lower error estimates in a weighted W1;p-
norm, with constants which depend on the shape-regularity
of the mesh, the polynomial degree of the finite element
approximating space, and, eventually, on the diffusion
parameter. Because of this last dependence, our theoretical
results are not optimal. However, we perform several
numerical experiments in order to show the effectiveness
of our approach to capture the layers very sharply and
without significant oscillations.

The paper is organized as follows. In Section 2 we recall
the advection–diffusion–reaction problem under consider-
ation and the stabilized scheme. In Section 3 we define an
a posteriori error estimator, prove some technical lemmas
and show its equivalence with the norm of the finite ele-
ment approximation error. Finally, in Section 4, we intro-
duce the adaptive scheme and report the results of some
numerical tests which allow us to asses the performance
of our approach.

2. A stabilized method for a model problem

Let X � R2 be a bounded polygonal domain with a
Lipschitz boundary C ¼ CD [ CN, with CD \ CN ¼ ;. We
denote by n the outer unit normal vector to C. Let dx0

be the Dirac delta measure supported at an inner point
x0 2 X.

Our model problem is the advection–reaction–diffusion
equation

�eDuþ a � ruþ bu ¼ dx0
in X;

u ¼ 0 on CD;

e ou
on
¼ g on CN;

8>><>>: ð2:1Þ

where:

(A1) e 2 R : e > 0;
(A2) a 2W1;1ðXÞ2, �1

2divaþ b P 0;
(A3) b 2 R, b P 0;
(A4) CD � fx 2 C : aðxÞ � nðxÞ < 0g;
(A5) g 2 L2ðCNÞ;
(A6) either b > 0 or jCDj > 0.

We are interested in the advection–reaction dominated
case in which e� kak0;1;X þ b.

Here and thereafter we use standard notation for Sobo-
lev and Lebesgue spaces and norms. Moreover, let
W 1;r

D ðXÞ :¼ fu 2 W 1;rðXÞ : ujCD
¼ 0g, 1 < r <1.

Let us remark that problem (2.1) does not have a solu-
tion in H 1ðXÞ. However, it has a solution in W 1;pðXÞ
8p < 2. In fact, GðxÞ :¼ 1

2p log jx� x0j is such that

�DG ¼ dx0
in X;

i.e., �G is a fundamental solution of the Laplace operator.
Straightforward calculations show that G 2 W 1;pðXÞ 8p 2
½1; 2Þ. Hence, substituting u ¼ wþ e�1G in (2.1), we observe
that problem (2.1) has a unique solution if and only if the
following problem does:

�eDwþ a � rwþ bw ¼ �e�1a � rG� e�1bG in X;

w ¼ �e�1G on CD;

e ow
on
¼ g � oG

on
on CN:

8>><>>:
ð2:2Þ

Since x0 62 oX, G and its normal derivative are smooth on
oX. Hence, standard arguments show that problem (2.2)
has a unique solution w 2 H 1ðXÞ (see for instance [14]).
Moreover, according to the results of [12], problem (2.2)
has no other solution in W 1;pðXÞ for p 2 ðp�; 2Þ, where
p� :¼ 2

1þp=ð2xÞ, with x being the largest reentrant corner of
the domain X.

Consequently, problem (2.1) has a solution u 2
W 1;pðXÞ 8p < 2, and this solution is unique if p� 6 p < 2.
Let us remark that for any polygonal domain X,
p� 6 8=5. Moreover, if X is convex, then p� < 4=3. From
now on we restrict our analysis to a fixed p 2 ðp�; 2Þ. More-
over, let q 2 ð2;1Þ be such that 1

p þ 1
q ¼ 1.

Let B be the bilinear form defined on W 1;p
D ðXÞ � W 1;q

D ðXÞ
by

Bðv;wÞ :¼
Z

X
ðerv � rwþ a � rv wþ bvwÞ: ð2:3Þ
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