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Abstract

The paper deals with the numerical analysis of a scalar nonstationary nonlinear convection—diffusion equation. The space discretiza-
tion is carried out by the discontinuous Galerkin finite element method (DGFEM), on general nonconforming meshes formed by pos-
sibly nonconvex elements, with nonsymmetric treatment of stabilization terms and interior and boundary penalty. The time
discretization is carried out by a semi-implicit Euler scheme, in which the diffusion and stabilization terms are treated implicitly, whereas
the nonlinear convective terms are treated explicitly. We derive a priori asymptotic error estimates in the discrete L>(L?)-norm, L*(H')-
seminorm and L*(H')-seminorm with respect to the mesh size / and time step t. Numerical examples demonstrate the accuracy of the
method and manifest the effect of nonconvexity of elements and nonconformity of the mesh.
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1. Introduction

The numerical solution of nonlinear conservation laws,
convection—diffusion problems and flow problems requires
the application of efficient, robust and accurate methods
allowing to overcome various difficulties, as the precise
capturing and resolution of boundary layers, shock waves
and contact discontinuities. It is possible to say that nowa-
days in computational fluid dynamics (CFD) two tech-
niques compete: the finite volume (FV) schemes and
stabilized finite element methods (FEM). A survey of FV

* This work is a part of the research project MSM 0021620839 financed
by the Ministry of Education of the Czech Republic and was partly
supported by the Grant No. 201/05/0005 of the Czech Grant Agency.

* Corresponding author. Tel.: +420 2 2191 3388; fax: +420 2 2481 1036.

E-mail addresses: dolejsi@karlin.mff.cuni.cz (V. Dolejsi), feist@kar-
lin.mff.cuni.cz (M. Feistauer), jhozmi@volny.cz (J. Hozman).

0045-7825/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2006.09.025

as well as FE approaches to the numerical simulation of
compressible flow can be found, e.g. in [23].

A natural generalization of the FV and FE techniques is
the discontinuous Galerkin finite element method (DGFEM),
which appears to be very suitable for problems with solu-
tions containing discontinuities and/or steep gradients.
The DGFEM is based on piecewise polynomial but discon-
tinuous approximations. It uses advantages of the FV as
well as FE methods. Similarly as in the finite volume
method, the DGFEM uses discontinuous approximations
and boundary fluxes are evaluated with the aid of a numer-
ical flux, which allows a precise capturing of discontinuities
and steep gradients. Similarly as in the finite element
method, the DGFEM uses higher degree polynomial
approximations of solutions, which produces an accurate
resolution in regions, where the solution is smooth.

There are several variants of the DGFEM for the
solution of problems containing diffusion terms. It is possi-
ble to use primitive variables or a mixed method. The
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method can be stabilized with the aid of a symmetric or
nonsymmetric treatment of diffusion terms, often com-
bined with an interior and boundary penalty. We consider
here the nonsymmetric variant with the interior and
boundary penalty (denoted as NIPG method). This stabil-
ization technique was proposed in [3,5] and represents the
generalization of the boundary penalty by Babuska and
Zlamal allowing to impose the Dirichlet boundary condi-
tion in a weak sense instead of building it in the finite ele-
ment space (see [2]). The nonsymmetric variant was also
investigated in [10,8,9,29] for elliptic and parabolic prob-
lems and in [19,20] for nonlinear convection—diffusion
problems. Although this approach does not give an opti-
mal order of convergence for elliptic problems, it leads to
a coercive operator for an arbitrary positive penalty coeffi-
cient. This property is important when the DGFEM is
applied to the system of the Navier-Stokes equations,
where the numerical analysis is rather complicated, see [16].

There is a number of works devoted to theory and
applications of the DGFEM. Let us mention, e.g. [1,3,5,
4,7,14-16,19,23-25,27,29,31]. For a survey of various dis-
continuous Galerkin techniques, see, e¢.g. [12,13].

In [17,20] we carried out a discretization of a scalar non-
stationary convection—diffusion equation with nonlinear
convective terms by the DGFEM with respect to space
variables (the method of lines) and derived a priori error
estimates. The time discretization can be carried out by
the (explicit) Runge-Kutta methods, which are simple for
implementation, but the resulting schemes are condition-
ally stable and the time step is drastically limited by the
CFL stability condition. In order to avoid this disadvan-
tage, it seems suitable to apply an implicit method, which
allows us to use a much longer time step. However, a fully
implicit DGFEM leads to a large, strongly nonlinear alge-
braic system, whose solution is rather complicated. This is
the reason that in the present paper, which is a continua-
tion of [20], we propose a semi-implicit scheme, which
appears quite efficient and robust. The linear diffusion
and stabilization terms are treated implicitly, whereas the
nonlinear convective terms explicitly. Similarly as in [20]
we allow to use a nonconforming mesh formed by noncon-
vex star-shaped polyhedral elements. In this paper we shall
be concerned with theoretical analysis of error estimates of
the semi-implicit method and present several numerical
experiments verifying the theoretical results. Also the effect
of nonconvexity of elements and nonconformity of a mesh
will be treated in numerical experiments.

The contents of the paper is the following. In Section 2,
the initial-boundary value problem for a scalar nonlinear
convection—diffusion equation is formulated. In Section 3,
we carry out the discretization of the problem by the semi-
implicit DGFEM and establish the existence and uniqueness
of the numerical solution. Section 4 contains some auxiliary
results, namely assumptions on the space discretization
(allowing even nonconforming grids with nonconvex star-
shaped elements) and some important inequalities and
estimates. These results are used in Section 5, where error

estimates in the discrete L*°(L?)-norm, L*(H')-seminorm
and L™ (H")-seminorm are proven. We obtain also estimates
of the error in the penalty terms. In Section 6 we present
numerical examples demonstrating the accuracy and
robustness of the DGFEM. In Section 7 we introduce some
concluding remarks and formulate open problems.

2. Continuous problem

Let QC R? (d =2 or 3) be a bounded polyhedral
domain and 7 > 0. (For d = 2 under the concept of a poly-
hedral domain we mean a polygonal domain.) We set
0, = Q2 x (0,T). By Q and 0Q we denote the closure and
boundary of Q, respectively. Let us consider the following
initial-boundary value problem: Find u : O — R such that

d
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We assume that the data satisfy the following conditions:

(a) fieCY(R), f,(00=0, s=1,....d,

(b) >0,

(c) ge (o, T];L*(Q)),

(d) up is the trace of some (4)

u' € C([0,T); H'(Q)) N L¥(Q;)
on 0Q x (0,7),
() u’ € LXQ).

We use the standard notation for function spaces (see, e.g.
[26]): LP(Q), L7(Q;) denote the Lebesgue spaces, W**(Q),
H*(Q) = W**(Q) are the Sobolev spaces, L7(0, T; X) is the
Bochner space of functions p-integrable over the interval
(0,7) with values in a Banach space X, C([0,T];X)
(C'([0,T]; X)) is the space of continuous (continuously
differentiable) mappings of the interval [0, 7] into X.

The assumption that f;(0) =0, s=1,...,d, does not
cause any loss of generality, as can be seen from Eq. (1).
The functions f;, called fluxes, represent convective terms,
¢ > 0 is the diffusion coefficient.

We shall assume that problem (1)—(3) has a weak solu-
tion (cf. [20], Section 2), satisfying the regularity conditions

u € L*(0, T; H"(Q)),

Ou

— € L*(0,T; H""(Q

ot € (Oa ; ( ))7 (5)
ou

WGL (07 T7L2(Q))7

where an integer p > 1 will denote a given degree of poly-
nomial approximations. Such a solution satisfies problem
(1)—(3) pointwise. Under (5),

Ou

ue C(0, T (Q), =€ C([0, T L(Q)). (6)
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