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Abstract

This paper proposes and analyzes a multi-level stabilized finite element method for the two-dimensional stationary Navier–Stokes
equations approximated by the lowest equal-order finite element pairs. The method combines the new stabilized finite element method
with the multi-level discretization under the assumption of the uniqueness condition. The multi-level stabilized finite element method
consists of solving the nonlinear problem on the coarsest mesh and then performs one Newton correction step on each subsequent mesh
thus only solving one large linear systems. The error analysis shows that the multi-level stabilized finite element method provides an
approximate solution with the convergence rate of the same order as the usual stabilized finite element solution solving the stationary
Navier–Stokes equations on a fine mesh for an appropriate choice of mesh widths: hj � h2

j�1; j ¼ 1; . . . ; J . Moreover, the numerical illus-
trations agree completely with the theoretical expectations. Therefore, the multi-level stabilized finite element method is more efficient
than the standard one-level stabilized finite element method.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The development of stable mixed finite element methods
is a fundamental component in the search for the efficient
numerical methods for solving the Navier–Stokes equations
governing the flow of an incompressible fluid by using a
primitive variable formulation. The importance of ensuring
the compatibility of the component approximations of
velocity and pressure by satisfying the so-called inf–sup
condition is widely understood. The numerous mixed finite

elements satisfying the inf–sup condition have been pro-
posed over the years. However, elements not satisfying the
inf–sup condition may also work well. Some kinds of mixed
finite elements which violate the inf–sup condition, are very
attractive and usable on many occasions. In particular, the
equal-order mixed finite elements are of practical impor-
tance in scientific computation because it is computation-
ally convenient in a parallel processing and multigrid
context. To the author’s knowledge, some numerical results
show that better results can be achieved by the lowest equal-
order finite element pairs than other unstable lowest order
finite element pairs by using the given stabilized method
for the stokes equation in [13,19]. Therefore, more attention
has been attracted by the equal-order finite elements.

Admittedly, the most convenient choice of the finite ele-
ment space from an implementational point of view would
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be the elements of the equal polynomial order in the veloc-
ity and the pressure with an identical degree distribution
for both the velocity and the pressure. However, on that
condition the inf–sup condition does not satisfy. Further-
more, the violation of the inf–sup condition often leads
to nonphysical pressure oscillations.

In order to make fully use of these equal-order finite ele-
ments which do not satisfy the inf–sup condition, a popular
strategy is to use the stabilized techniques to circumvent or
ameliorate the compatibility condition. Some kinds of
methods have been studied during the past decades for
the equal-order finite elements (see [1–7]). These methods
contribute the stabilization for the Stokes equation by
using the equal-order finite element pairs. The main draw-
back, however, is that the stabilization necessarily intro-
duces the stabilized parameters either explicitly or
implicitly. Also, some methods are conditionally stable
and achieve suboptimal accuracy depending on the stabi-
lized parameters with respect to the solution regularity
(see [4,15]). Thus, insensitivity to such parameter values is
important if the methodology is to be competitive.

The idea of the new stabilized finite element method
based on two local Gauss integrations technique is derived
from the work of [12,19,28,29] for the stationary Stokes
equations. This stabilized method belongs to the local pres-
sure projection method. We mostly borrow from the tech-
nique of [12] in theory. Unlike the penalty methods (see [8–
11]) which uncouple pressure and velocity, stabilization
aims at relaxing the continuity equation so as to apply
the inf–sup condition to the incompatible spaces. Consis-
tently, the stabilized methods (see [2,4,14]) are accom-
plished by using the residual of the momentum equation.
These residual terms must be designed by the mesh-depen-
dent parameters, whose optimal values are often not
known. Especially to the lowest equal-order pairs, pressure
and velocity derivatives in this residual either vanish or are
poorly approximated, causing difficulties in the application
of consistent stabilization. Another method is non-residual
stabilization. Examples include local and global pressure
jump formulations where the constraint is relaxed by using
the jumps of the pressure across element interfaces. This
stabilization requires the edge-based data structures, and
the subdivision of the mesh into patches for the local jump
formulation. However, the new method based on two local
Gauss integrations technique do not require approximation
of derivatives, specification of mesh-dependent parameters,
and always lead to symmetric problems. Also, this stabil-
ization is completely local at the element level. In addition,
no edge-based data structures and assembly are required.
As a result, the new stabilized method can be deployed in
existing codes with very little additional effort by using sim-
ple Gauss integral technique. At the same time, we offer
numerical results to compare the new method with other
methods in [12,30,27]. The date indicate that the new
method is more simple and efficient than others.

However, when the nonlinear Navier–Stokes equations
are numerically solved, it takes much time. A common

choice for this problem is two-level method or multi-level
method. The basic idea of these methods is to compute
an initial approximation on a very coarse mesh (involving
the solution of a very small number of nonlinear equa-
tions). Moreover, the fine structures are captured by solv-
ing one linear system (linearized about the coarse mesh
approximation using Newton iterative method) on a fine
mesh. Some classical method of two-level and multi-level
can be found in the works of Xu [20,21], Layton and Tob-
iska [18], Layton [22], Layton and Lenferink [23], Layton,
Lee and Peterson [24], He [25,26,35] and Li [30,31]. The
main idea of multi-level finite element method consists of
solving the fully nonlinear Navier–Stokes problem only
on the coarsest mesh; subsequent approximations are
formed by solving the linearized Navier–Stokes problem
about the solution on the previous level. Hence, the
multi-level finite element method can save the large amount
of computational time than the one-level finite element
method.

As noted in the works cited above, the efficient method
for the stationary Navier–Stokes equations by using the
equal-order finite element pairs, is to combine the new sta-
bilized finite element method with the multi-level discreti-
zation under the assumption of the uniqueness condition.

This paper firstly recalls the stabilized finite element
method based on two local Gauss integrations technique
[12] for the stationary Navier–Stokes equations approxi-
mated by the lowest equal-order finite elements P 1 � P 1

or Q1 � Q1. Then, we present the well-posedness and the
optimal error estimate of the stabilized finite element
method for the stationary Navier–Stokes equations in
[30]. Finally, the results of Theorems 4.2 and 4.3 show that
the method we study are of the convergence rate of the
same order as the usual stabilized finite element method.
However, our method is more efficient than the one-level
finite element method.

The remainder of the paper is organized as follows. In
the next section, abstract functional setting of the
Navier–Stokes problem is given with some basic state-
ments. The stabilized finite element approximations are
recalled in Section 3. Error estimates on the multi-level
method for the stabilized finite element solution (uh,ph)
are derived from Section 4. In Section 5, a series of numer-
ical experiments confirm the theoretical results completely.

2. Function setting of the Stationary Navier–Stokes problem

Let X be a bounded domain in R2, assumed to have a
Lipschitz-continuous boundary C and to satisfy a further
condition stated in ðA1Þ below. The stationary Navier–
Stokes equations are considered as follows:

mDuþrp þ ðu � rÞuþ 1

2
ðdivuÞu ¼ f ; divu ¼ 0 in X;

ð2:1Þ
ujoX ¼ 0; ð2:2Þ
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