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Abstract: Human intelligence is deeply dependent on its physical embodiment, and its
development requires interaction between its own body and surrounding environment. However,
it is still an open problem that how we can integrate the lower level motor control and a higher
level symbol manipulation system. One of our research goals is to make a computational model of
human intelligence from the motor control to the higher level symbol manipulation. To this end,
we propose a robot motor control learning as the first step in this paper. The method is based
on HMMs (Hidden Markov Models). The robot moves its arm randomly by changing torques
of joint angles and obtains the pose of its arm. The HMM uses state space for representing the
relationship between joint torques and pose of the arm by segmenting the obtained sensory-
motor information autonomously. The robot can gradually learn to move its arm to a specific
position by planning the torque sequence using the learned model. Moreover, we also discuss a
future plan for the ultimate goal. We are planning to probabilistically integrate the proposed
motor control HMM and the language acquisition model, which has already been proposed by
the authors. In this paper, we describe an overview of the integrated model with some important
building blocks for our future plan.
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1. INTRODUCTION

Recently, artificial intelligence using deep neural networks
is growing very rapidly and achieved very high perfor-
mance in many recognition tasks. For example, convolu-
tion neural networks (CNN) Krizhevsky et al. (2012) show
almost same performance to the human vision. The CNNs
sometimes even outperform the human vision in specific
tasks. Deep reinforce learning (or deep Q-network) has
been proven to be able to outperform human skills for
many video games through learning by trial and error
Mnih et al. (2013, 2015).

On the other hand, human intelligence basically depends
on embodiment and the interaction of man with his en-
vironment is indispensable to intellectual development.
Levine et al. investigate intelligence based on the interac-
tion between embodiment and environments through the
reinforcement learning of the sensorimotor system. They
showed that the robot can learn meaningful actions such as
assembling airplane of toys Levine et al. (2015). However,
the implementation of such a high level intelligence start-
ing form the self body control to very high level cognition
is very hard and is still an open problem Taniguchi et al.
(2015).

The ultimate goal of this research is to realize and un-
derstand the intelligence achieving intellectual actions and
language understanding by constructing a model of intel-
ligence, which develops from the body control to symbol
manipulation. In this paper we focus especially on the ac-
quisition of self motor control through the interaction be-
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tween a robot and environment, which is a very basic part
toward the ultimate goal. Here we aim at constructing an
algorithm that incrementally learns motor control through
motor babbling like babies based on the sensorimotor
learning. This paper examines the use of hidden Markov
models for the motor learning. The idea is that the robot
moves its own arm randomly, which is the motor babbling,
and then the trajectories and joint torques are segmented
and represented using the state-space. The robot can use
the state-space model to calculate a torque sequence for
moving its arm from current pose to a goal by estimating
the most likely state sequence.

Such a probabilistic modeling of motor control has an
advantage for probabilistically integrating it with our pro-
posed language acquisition model, which uses Bayesian
modeling Attamimi et al. (2015), in order to achieve the
above mentioned ultimate goal. Furthermore, we can apply
the idea of reinforcement learning Nagai et al. (2015, 2016)
for constructing a human-like higher level intelligence,
where the robot starts learning its motor control from
scratch and then gradually acquires language, symbol ma-
nipulation and so on. This paper also discusses the integra-
tion of multi-layered multimodal LDA (mMLDA) and re-
inforcement learning for implementing a whole intelligent
system based on the proposed motor control learning.

Some researchers have proposed sensorimotor learning us-
ing the motor babbling in the literature Demiris et al.
(2005); Saegusa et al. (2008); Nishide et al. (2008); Ya-
mada et al. (2015). However, no effort can be found to
examine extending such a learning to language acquisition
to the best our knowledge. On the other hand, Takano et
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al. proposed a probabilistic model which connects physical
body motions and language bidirectionally Takano et al.
(2015). Although it is a promising and interesting model,
they do not consider incremental learning such that the
robot is proactive in learning the motor control from
scratch and gradually reaches to the high level intelligence
such as language and symbol manipulation.

2. LEARNING OF MOTOR CONTROL USING HMM

This section describes the proposed method for learning
of motor control by structuring the data obtained through
motor babbling.

2.1 Learning

The multimodal hidden Markov model (multimodal HMM)
is utilized for the proposed method as a state emits mul-
tiple information such as joint torques and the pose of
the arm. We take 2-step learning procedures; 1) each
observation (modality) is modeled by a different HMM
independently, and then 2) states of all HMMs are merged
so that all combination of different states are represented
by a single merged HMM. This procedure makes it possible
for the model to represent all significant boundaries of all
state-space. Moreover, the number of states is relatively
easy to decide.

2.2 Estimation of state sequence

Once the HMM has been trained, the robot is able to
calculate torque sequence which moves the arm from the
current position to a goal. The Viterbi algorithm, which is
a dynamic programming algorithm, is used for finding the
most likely state sequence [sg, s1, -+, $y]that maximizes
the following equation.
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where X i, X, and N represent the current pose, the goal
pose and the number of steps, respectively.

3. EXPERIMENT

Experiments on the learning and the arm path planning
have been carried out using the robot platform “Baxter”
from rethink robotics. As shown in Fig. 1, Baxter has two
arms with 7 degrees of freedom. One of them is used in
our experiment. We decided a start position Py and eight
goal positions Py, P, ---, Ps. The robot moves its arm
starting from F, to one of eight goals many times as the
motor babbling. During the motor babbling, the poses and
all joint torques are recorded in order to train the proposed
HMM.

Initially, there were two independent HMMs. One is the
HMM that models joint torques and the other HMM
is for modeling the position of the end effector. Each
HMM has nine states. Then two HMMs were merged
resulting in the HMM with 52 states. Figure 2 illustrates
joint torques, which are compressed by PCA. Figure 3
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Fig. 1. The robot platform “Baxter”.

Fig. 2. Torque space compressed by PCA.
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Fig. 3. Positions of end effector.

represents positions of the end effector (training samples),
which are colored according to their states.



Download English Version:

https://daneshyari.com/en/article/5002737

Download Persian Version:

https://daneshyari.com/article/5002737

Daneshyari.com


https://daneshyari.com/en/article/5002737
https://daneshyari.com/article/5002737
https://daneshyari.com

