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Abstract: In this study of automatic obstacle avoidance maneuver, a fast and precise algorithm
for solving a two-point boundary value problem (TPBVP) is developed. This algorithm realizes
optimal control by minimizing the total vehicle force using integrated steering and braking
control. Such optimal control is characterized by three nonlinear equations that result from
the application of the necessary conditions for optimality. These highly nonlinear simultaneous
equations are nondimensionalized, and algebraic manipulations are performed for simplification.
As a result, they are reduced to a single nondimensionalized equation with the dimensionless
final time as an unknown and aspect ratio as an input that describes the relative position
between the obstacle and vehicle. For a fast and robust solution process, a search interval for a
numerical root solving method is set using approximating polynomials. Based on the solution of
the dimensionless final time, the dimensionless total vehicle force and dimensionless jerk, both
of which are essential aspects of collision avoidance maneuver, can be easily computed.
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1. INTRODUCTION

In automotive engineering, driver assistance systems for
safety are considered the most essential field of study. Col-
lision avoidance systems based on automatic braking are
already available in production vehicles. Collision avoid-
ance by pure braking is effective for cases of low vehicle
speed with high tire-road friction coefficients. Obstacle
avoidance by steering offers better performance for higher
vehicle speed and/or on wet road surfaces. With full uti-
lization of the vehicle friction circle, the integration of
steering and braking has been demonstrated to be more
effective than pure steering (Hattori et al., 2008).

Various objective functions for the optimal control of the
integrated steering and braking have been studied. Shiller
and Sundar (1998) used minimum longitudinal avoidance
distance. In a study by Fujioka et al. (2008), a minimiza-
tion of collision risk was suggested. This collision risk
consists of a risk function that depends on the obstacle
location, a function of time-to-collision or longitudinal
avoidance distance, and a penalty function of longitudinal
and lateral accelerations. The penalty function provides
smooth acceleration/braking and steering actions. Mini-
mization of the time integral of the sum of squared tire
workloads, and front-wheel steering angle rate was studied
by Horiuchi et al. (2006).

In a recent study, a minimization of the total vehicle force
problem was proposed by Ohmuro and Hattori (2010).
By minimizing the total vehicle force, the force margin
is maximized, and this allows operations with some safety
margin. Because of the availability of friction estimation
methods, we can assume online monitoring of the maxi-

mum vehicle force. In order to estimate the friction coef-
ficient, Muller et al. (2003) used friction coefficient versus
slip data for the low slip region; Alvarez et al. (2004) used a
first-order dynamic friction model called the LuGre model;
Wang et al. (2004) used linear and non-linear models
for low and high slips, respectively; and Nishihara and
Kurishige (2011) used the grip margin derived from the
brush model. Note that the obstacle avoidance maneuver
can be realized if the required total force does not exceed
the maximum vehicle force.

In the previous study (Ohmuro and Hattori, 2010), the
application of the optimal control theory results in a two-
point boundary value problem (TPBVP), that is reduced
to a system of highly nonlinear equations. Because of
the difficulties expected in the online solution of these
highly nonlinear equations, they proposed a pair of two-
dimensional maps that provide the total vehicle force
along with the direction angle that constitutes the optimal
control inputs. In general, use of these maps leads to
inaccurate solutions, particularly in the case where the
output is very sensitive to the inputs. Such accuracy could
be improved by increasing map resolution at the expense
of large data storage space.

For one equation in one unknown, fast root finding meth-
ods, such as Newton’s, secant, and inverse quadratic inter-
polation, are available. Brent’s method is a hybrid algo-
rithm that includes the very stable bisection method, and
is known for its combined efficiency and robustness (Brent,
1971). To a system of nonlinear equations, application of
Newton’s or Broyden’s method may offer speed; however,
there is no guarantee of convergence. Reduction to one
equation in one unknown is preferable because stable con-
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vergence is mostly guaranteed with a sufficiently narrow
interval determined with an approximate solution to the
equation.

In this paper, minimization of the total vehicle force for
the obstacle avoidance problem is reduced to finding the
solution of one equation in one unknown. In order to
estimate the initial guess for the root solving method,
Chebyshev and least squares function approximations are
performed. The dimensionless final time is obtained with
high precision using Brent’s method, and this leads to
the determination of optimal control that is as precise as
required.

2. PROBLEM FORMULATION
2.1 Obstacle Avoidance Problem

Figure 1 shows a vehicle that moves on a straight road with
initial vehicle longitudinal velocity v.o, and initial lateral
velocity vy0, at a given position. The vehicle performs
a lane change in order to avoid an obstacle blocking its
forward path. The longitudinal distance to the obstacle
is denoted by x¢. The lateral distance at final time tg,
is given as yy. For simplicity, the vehicle is treated as a
particle with mass m. In this problem, total vehicle force
F;, is to be minimized for the lane change maneuver.
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Fig. 1. Schematic diagram of lane change maneuver

Figure 2 the trade-off between total longitudinal force X4,
and total lateral force Y;. These are the forces that a
vehicle generates at a given instant. Total vehicle force
F;, is assumed to be time invariant and limited by the
maximum vehicle force Fiyax, that is expressed as the
product of tire-road friction coefficient p, and vehicle
normal load Z; = mg. Maximum force Fp.x = s
represents the tire grip limit. Once the longitudinal and
lateral vehicle forces are evaluated, tire-forces distribution
schemes (Nishihara and Higashino, 2013; Ono et al., 2006)
can be utilized to calculate the front and rear wheel
steering angles and braking torques, but this phase is not
within the scope of this study.

2.2 Optimal Control Problem Formulation

An optimal control theory is utilized for the obstacle
avoidance problem (Bryson and Ho, 1975). A system
model is given as

&(t) = f(x(t), u(t),t) z(to) = zo (1)
where x(t) and u(t) denote, respectively, the n and m

dimensional vectors of the state and control variables. The
control inputs and corresponding states are
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Fig. 2. Total vehicle force bounded by friction circle

2(t) = [2(1) @ (1) y(t) 5(1)]" (3)
The initial conditions of the states are
x(to) = [0 vz0 O vyo]T (4)

The objective function for the obstacle avoidance lane
change problem is

inJ=F, 5
min ; (5)

The terminal constraint is written as
LT
Y(a(t),t) = [x(t) —xr y(t) —yr y(t)] (6)

The longitudinal and lateral dynamics of the vehicle can
be expressed as (7) and (8), respectively.

X (t) = mag (t) (7)

Y (t) = may (t) (8)
where the longitudinal acceleration a,, and lateral accel-
eration a,, are written as

a0 (1) =~ sinp (1) (9)

F;
ay (t) = ‘Et cos ¢ (t) (10)
where
—t+ty

—Vyt + vty + vy

tan p(t) = (11)

Hattori and Ohmuro (2010) discussed three obstacle avoid-
ance problems that are minimization of zy, minimization
of F}, and maximization of y¢. These problems are related
to each other such that their optimal solutions can be
obtained by solving the same simultaneous equations with
different parameter sets of given and unknown. We have
derived a precise solution method for the minimization of
xy where y(ty) = yy and vy(ty) = 0 are the terminal
constraints, and F} is assumed to be known prior to the
lane change maneuver (Singh and Nishihara, 2016). In
the present study, F; is to be minimized for a given x;.
Note that the minimization of F; is a dual problem of the
minimization of x¢. Therefore, the simultaneous equations
of the primal problem is used here. In Eqs. (12) to (16),
the variables to be determined are Lagrange multiplier
constants v, and v, as well as final time ¢;.
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