ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC-PapersOnLine 49-25 (2016) 384-389

Acceleration of AES Encryption Algorithm
Using Field Programmable Gate Arrays

David Smekal * Jakub Frolka* Jan Hajny *

* Brno University of Technology, The Faculty of Electrical Engineering
and Communication, Technicka 12, Brno, Czech Republic
(e-mail: smekal@phd.feec.vutbr.cz, hajnyQ@feec.vutbr.cz)

Abstract: This article deals with encryption on Field Programmable Gate Array (FPGA). The
first part describes current state of symmetric and asymmetric cryptography. The following part
focuses on the AES algorithm and its implementation in VHDL language. The last part shows
testing results of mentioned implementation on card NFB-40G2 containing FPGA from Xilinx

series Virtex-7.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Keywords: AES, FPGA, VHDL, implementation, encryption, decryption, NetCOPE

1. INTRODUCTION

Nowadays, great emphasis is placed on security and
speed of data transmission. Therefore, recently, when the
FPGA (Field Programmable Gate Array) has become
more and more accessible, experts began to consider their
appropriate use for applications demanding higher perfor-
mance. FPGAs are programmable gate arrays, which allow
us to develop hardware accelerated applications. Their
biggest advantage is that they can be programmed after
their manufacture which leads to their versatility. Today’s
generation consists mainly of programmable logic blocks,
RAM memory and multiplexers.

One possible way how to take advantage of FPGA can
be implementation of asymmetric ciphers. The authors
Blum and Paar (1999) implemented a modular exponen-
tiation on FPGA Xilinx XC4000. For asymmetric cipher
RSA of length 1024 bits, their design needed 0.75 ms
for encryption and 10.18 ms for decryption. The design
was later improved and implemented to FPGA Xilinx
XC40250XV in Blum and Paar (2001). The improved
times for encryption and decryption for RSA cipher of
length mentioned above is 0.22 ms for the encryption and
3.1 ms in case of decryption, when the clock frequency
was 45.6 MHz. In Daly (2002) Xilinx V1000FG680-6 was
used. This design, in case of encryption and decryption
using RSA of length 1024 bits could reach data through-
put 48.2 kb/s, which corresponds with time of 21.25 ms.
In Mclvor (2004) architecture for exponentiation was
designed, for RSA of length 1024 bits the architecture
could reach data throughput 4.79 Mb/s for encryption and
375.54 kb/s for decryption, which corresponds with time
0.214 ms for encryption and 2.73 ms for decryption. These
values were obtained from the analysis for FPGA Xilinx
XC2V6000. FPGA Xilinx XCV2000E-6 was used in Paar
(2005), 1024 bits RSA exponentiation can be performed
with frequency 69.4 MHz and with time 6.1 ms.

Other articles deal with the design that is resistant to
attacks on side channels. Design in Ciet (2003) was
synthesized on Virtex2 XC2V6000 and the testing results

for 1024 bit RSA are better than 150 ms. In Fournaris
(2010) an algorithm for modular exponentiation, which
was tested for 1024 bits on Virtex 5 XC5VLX50T with
frequency 274 MHz, was designed.

Another group of experts dealt with the symmetric ci-
phers. In Elbirt (2001) several algorithms to FPGA were
implemented, Rijndael algorithm which forms the basis of
AES algorithm was chosen. There are many ways how to
implement individual encryption operations to FPGA. Ar-
ticle Arrag (2012) is dedicated to efficient design of hard-
ware implementation of various architectures and the re-
sults of their tests are presented. Wiebe (2007) is one
of the first articles, which describes hardware implemen-
tation of AES-128 algorithm to FPGA (Xilinx Virtex-4
XC4VFX12). The chip works with data with speed up to
640 Mb/s. Data processing speed of one block is around
30 Mb/s.

Section 3 of the article presents our implementation of al-
gorithm AES (Advanced Encryption Standard). AES is
considered as a global commercial standard. Our imple-
mentation is directed to the platform of network cards,
which are based on Virtex-7 Xilinx FPGA.

2. ADVANCED ENCRYPTION STANDARD

Advanced Encryption Standard (AES) NIST (2001),
is an algorithm used for data encryption. AES is a part
of the symmetric block cipher family, which is working
with blocks of data, and they are of the fixed length of 128
bits. These bits are placed to matrix of 4x4, when one
cell of matrix corresponds to one byte. One key of length
128, 192 or 256 is used for encryption and decryption. In
this paper we are working with 128 bit key. This algorithm
can be divided into three parts according to Daemen and
Rijmen (1999):

e initial part (Key Expansion, AddRoundKey),

e iteration part — so called round (SubBytes, ShiftRows,
MixColumns, AddRoundKey),

e final part (SubBytes, ShiftRows a AddRoundKey).

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.12.075

David Smekal et al. / IFAC-PapersOnLine 49-25 (2016) 384-389 385

An expansion of the key is performed at the beginning
of the encryption. In the cipher XOR operation between
the 128 bit key and the 4x4 state matrix (block of 128 bits
of data) is performed. Subsequently, nine iterations which
are normally referred to as the round are performed. The
number of rounds depends on the length of the key, for 128
bit key it is 9. Every round consists of the substitution of
the bytes in the state matrix (SubBytes), rotation of rows
(ShiftRows), substitution of columns (MixColumns). The
matrix is combined with round’s key (AddRoundKey),
at the end of each round. The final part consists of the
substitution of the bytes, rotation of rows and the last
addition of the round key. Bytes of the ciphertext are
stored in the resulting matrix. These steps described above
are shown in Fig. 1.

START]—)| Key Expansion |—)| AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

END HAddRoundKeyH ShiftRows |(-| SubBytes

9x

Fig. 1. The steps of the AES algorithm

Decryption is the reverse process of encryption, where the
outcome will be a message that was at the beginning of
the whole encryption process. The decryption algorithm
is performed in reverse order using inverse transforma-
tion, because all operations are reversible. The inverse
operation is to change the transformation in the reverse
order or by using other values. The Inverse transforma-
tion for SubBytes transformation is InvSubBytes which
utilizes inverse substitution table. InvShiftRows is an in-
verse transformation for ShiftRows. For MixColumns it is
InvMixColumns which utilizes an inverse mixing matrix.
The mixing matrix for decryption is shown in Table 3. The
last inverse transfomation is InvAddRoundKey, which is
only operation XOR.

2.1 Key Ezpansion

The expansion of the key is performed at the begin-
ning of each encryption. The expansion of the key is
used for creation of the keys from the main encryption
key to the so-called Round Keys. Obtained Rounds keys
are used in transformation AddRoundKey which is applied
at each round. If the size of the key is 128 bits, a total
of ten sub keys is needed. The original input key is used
for initiation part, the newly calculated keys are used
for another ten rounds. The number of rounds depends
on the length of the key, the exact number is presented
in Table 1.

Table 1. The number of rounds

Length of the key | 128 | 192 | 256
Number of rounds 10 12 14

The key values are represented by matrix 4 x 4 bytes,
similarly as the input data of algorithm AES. For better
understanding the Key expansion is shown in Fig. 2. This

operation carries out the expansion of the key with length
of 16 bytes. Values of columns are perceived as array
elements, which are labeled W (word). The key has four
words, with length of four bytes. The obtained words
have index values from 0 to 4. When the number of
the iterations is ten, 44 words are needed. Values of the
previous key are used for the construction of the new key.

K0,0 | K0,1|K0,2(K0,3

K1,0|K1,1|K1,2 (K13

K2,0|K21(K22|K23

K3,0 [K3,1|K3,2(K3,3

P

Y

E,

W1 ([wW2)| w3

=
o

Fig. 2. Key Expansion

The last word is subjected to function f, on which the cal-
culation of other words is based. Operations which are
forming function f are shown in Fig. 3. Function f consists
of three operations:

e RotWord — function that rotates column upwards by
1 byte,

e SubWord — function that performs substitution Sub-
Bytes from substitution table (S-Box),

e XOR with Rcon — operation XOR is used between
bytes from columns and Round constant Rcon from
Table 2.

Table 2. Rounds constants Rcon

01| 02|04 |08 |10 |20 | 40 | 80 | 1b | 36
00 | OO | OO | OO | OO | OO | OO | OO | OO | OO
00 | OO | OO | OO | OO | OO | OO | OO | OO | OO
00 | OO | OO | OO | OO | OO | OO | OO | OO | OO

RotWord SubWord

K03 K1,3 8oy > K' 1,3
S >
> Fo
K1,3 K23 > g > K'2,3 o m
F1
K23 K33 >sBof——>K'33
> F2
K33 K0,3 > j] > K' 0,3 o m
> F3

Fig. 3. The function f of the key expansion

After completing these three operations, we have a new
word labeled F', which enters further into the process, see
Fig. 2. At the end of the operations, we have one new key
of length 16 bytes, which is used for one iteration. From

Download English Version:

https://daneshyari.com/en/article/5002876

Download Persian Version:

https://daneshyari.com/article/5002876

Daneshyari.com

https://daneshyari.com/en/article/5002876
https://daneshyari.com/article/5002876
https://daneshyari.com

