
IFAC-PapersOnLine 49-25 (2016) 413–418

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2016.12.083

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Increasing Safety and Reliability
of Roll-back and Roll-forward Lockstep
Technique for Use in Real-time Systems

J. Arm ∗ Z. Bradac ∗∗ R. Stohl ∗∗∗

∗ Department of Control and Instrumentation, Faculty of Electrical
Engineering and Communication, Brno University of Technology,

Brno, Czech Republic (e-mail: jakub.arm@phd.feec.vutbr.cz)
∗∗ Department of Control and Instrumentation, Faculty of Electrical
Engineering and Communication, Brno University of Technology,

Brno, Czech Republic (e-mail: bradac@feec.vutbr.cz)
∗∗∗ Department of Control and Instrumentation, Faculty of Electrical
Engineering and Communication, Brno University of Technology,

Brno, Czech Republic (e-mail: stohl@feec.vutbr.cz)

Abstract: This work focuses on the roll-back and roll-forward lockstep architecture that are
techniques to detect faults like SEU, voltage dips or another impacting to system misbehaviour.
These techniques are explored using FMEA analysis and on its basis, some propose is presented
that improves reliability and safety of each technique. In this case, availability is lowered
as a trade of higher reliability and safety. These techniques are also explored from the point
of view using in real-time systems. On this basis, some recommendations of appropriate
checkpointing in lockstep roll-back technique is presented.

Keywords: Fault-tolerant, lockstep, fault detection, fault masking, roll-back, roll-forward, SEU,
reliability, safety, embedded, real-time, RTOS

1. INTRODUCTION

Real-time operating systems are used in safety-critical, in-
dustrial, medical and automotive applications. Execution
time of every operation has to be bounded in hard real-
time systems and lowered in soft real-time systems. This
OS is usually built in the embedded system.

The current challenge is to do more computational oper-
ations in lesser bounded time. Therefore more powerful
devices are used as a control unit of the system. Systems
are bigger and more complex, therefore more bugs can
occur. Because of EM pollution, there is a higher risk
of SEU (Single-Event Upsets) causing errors on memories
and buses. Therefore more fault-tolerant techniques are
used to eliminate and to detect errors caused by hard-
ware and software defects. One of the main fault-tolerant
technique is based on using proved hardware and software
by time and by the count of applications. This technique is
suppressed using new powerful processors. Therefore there
has to be more sophisticated error detectors.

Fault avoidance is the preferred way how to eliminate
errors. It consist of techniques like systematic architec-
ture, hardware and software dimensioning, documenta-
tion, or system modelling and offline testing. Then it is
crucial to focus on fault detection using online testing,
monitoring, etc. When an error is detected, it should be
masked using reconfiguration or redundancy.

The most used and the simplest technique to detect system
hangs and deadlocks is a watchdog. It will raise an error

when the internal time counter is not reset and exceeds
a threshold. Its reaction threshold is higher when RR
(Round Robin) scheduler is used. In [Pohronská and
Krajčovič (2011)], one hardware watchdog per each thread
is used which should eliminate false positive error detection
causing by overload. On the other hand, there are many
possible faulty scenarios which are not detected.

Application faults are mostly caused by SEU, voltage dips
or hardware malfunction so the most used technique is so
called lockstep. The basic idea is that two same CPU are
assumed to perform same operations using a mutual clock
source. Inputs are the same and outputs are compared.
On a discrepancy, an error is signalled. There are some
modifications like delaying of one core [Troppmann and
Fuessl (2008)], defining one core as the leading and sec-
ond as the paired [Horst et al. (2001)], or a comparison
at the transaction level [James-Roxby and Wittig (2013)].
A reaction to this error is system reset or overall reconfigu-
ration because the faulty core is not known. This technique
has a vulnerability in common cause faults like software
bugs, input malfunction or hardware input malfunction.

The problem of the not known faulty core is solved using
TMR (Triple Modular Redundancy) that masks a fault
in one of three cores using an output voter. The voter
calculates median of all values three-times and the fault
is masked. This technique needs three CPU cores so it
is resource exhausting. In putting pressure on low price,
there is a need to provide the same level of reliability
and availability using less resources, e.g. enhanced mon-

14th IFAC Conference on Programmable Devices and Embedded
Systems
October 5-7, 2016. Brno, Czech Republic

Copyright © 2016 IFAC 413

Increasing Safety and Reliability
of Roll-back and Roll-forward Lockstep
Technique for Use in Real-time Systems

J. Arm ∗ Z. Bradac ∗∗ R. Stohl ∗∗∗

∗ Department of Control and Instrumentation, Faculty of Electrical
Engineering and Communication, Brno University of Technology,

Brno, Czech Republic (e-mail: jakub.arm@phd.feec.vutbr.cz)
∗∗ Department of Control and Instrumentation, Faculty of Electrical
Engineering and Communication, Brno University of Technology,

Brno, Czech Republic (e-mail: bradac@feec.vutbr.cz)
∗∗∗ Department of Control and Instrumentation, Faculty of Electrical
Engineering and Communication, Brno University of Technology,

Brno, Czech Republic (e-mail: stohl@feec.vutbr.cz)

Abstract: This work focuses on the roll-back and roll-forward lockstep architecture that are
techniques to detect faults like SEU, voltage dips or another impacting to system misbehaviour.
These techniques are explored using FMEA analysis and on its basis, some propose is presented
that improves reliability and safety of each technique. In this case, availability is lowered
as a trade of higher reliability and safety. These techniques are also explored from the point
of view using in real-time systems. On this basis, some recommendations of appropriate
checkpointing in lockstep roll-back technique is presented.

Keywords: Fault-tolerant, lockstep, fault detection, fault masking, roll-back, roll-forward, SEU,
reliability, safety, embedded, real-time, RTOS

1. INTRODUCTION

Real-time operating systems are used in safety-critical, in-
dustrial, medical and automotive applications. Execution
time of every operation has to be bounded in hard real-
time systems and lowered in soft real-time systems. This
OS is usually built in the embedded system.

The current challenge is to do more computational oper-
ations in lesser bounded time. Therefore more powerful
devices are used as a control unit of the system. Systems
are bigger and more complex, therefore more bugs can
occur. Because of EM pollution, there is a higher risk
of SEU (Single-Event Upsets) causing errors on memories
and buses. Therefore more fault-tolerant techniques are
used to eliminate and to detect errors caused by hard-
ware and software defects. One of the main fault-tolerant
technique is based on using proved hardware and software
by time and by the count of applications. This technique is
suppressed using new powerful processors. Therefore there
has to be more sophisticated error detectors.

Fault avoidance is the preferred way how to eliminate
errors. It consist of techniques like systematic architec-
ture, hardware and software dimensioning, documenta-
tion, or system modelling and offline testing. Then it is
crucial to focus on fault detection using online testing,
monitoring, etc. When an error is detected, it should be
masked using reconfiguration or redundancy.

The most used and the simplest technique to detect system
hangs and deadlocks is a watchdog. It will raise an error

when the internal time counter is not reset and exceeds
a threshold. Its reaction threshold is higher when RR
(Round Robin) scheduler is used. In [Pohronská and
Krajčovič (2011)], one hardware watchdog per each thread
is used which should eliminate false positive error detection
causing by overload. On the other hand, there are many
possible faulty scenarios which are not detected.

Application faults are mostly caused by SEU, voltage dips
or hardware malfunction so the most used technique is so
called lockstep. The basic idea is that two same CPU are
assumed to perform same operations using a mutual clock
source. Inputs are the same and outputs are compared.
On a discrepancy, an error is signalled. There are some
modifications like delaying of one core [Troppmann and
Fuessl (2008)], defining one core as the leading and sec-
ond as the paired [Horst et al. (2001)], or a comparison
at the transaction level [James-Roxby and Wittig (2013)].
A reaction to this error is system reset or overall reconfigu-
ration because the faulty core is not known. This technique
has a vulnerability in common cause faults like software
bugs, input malfunction or hardware input malfunction.

The problem of the not known faulty core is solved using
TMR (Triple Modular Redundancy) that masks a fault
in one of three cores using an output voter. The voter
calculates median of all values three-times and the fault
is masked. This technique needs three CPU cores so it
is resource exhausting. In putting pressure on low price,
there is a need to provide the same level of reliability
and availability using less resources, e.g. enhanced mon-

14th IFAC Conference on Programmable Devices and Embedded
Systems
October 5-7, 2016. Brno, Czech Republic

Copyright © 2016 IFAC 413

Increasing Safety and Reliability
of Roll-back and Roll-forward Lockstep
Technique for Use in Real-time Systems

J. Arm ∗ Z. Bradac ∗∗ R. Stohl ∗∗∗

∗ Department of Control and Instrumentation, Faculty of Electrical
Engineering and Communication, Brno University of Technology,

Brno, Czech Republic (e-mail: jakub.arm@phd.feec.vutbr.cz)
∗∗ Department of Control and Instrumentation, Faculty of Electrical
Engineering and Communication, Brno University of Technology,

Brno, Czech Republic (e-mail: bradac@feec.vutbr.cz)
∗∗∗ Department of Control and Instrumentation, Faculty of Electrical
Engineering and Communication, Brno University of Technology,

Brno, Czech Republic (e-mail: stohl@feec.vutbr.cz)

Abstract: This work focuses on the roll-back and roll-forward lockstep architecture that are
techniques to detect faults like SEU, voltage dips or another impacting to system misbehaviour.
These techniques are explored using FMEA analysis and on its basis, some propose is presented
that improves reliability and safety of each technique. In this case, availability is lowered
as a trade of higher reliability and safety. These techniques are also explored from the point
of view using in real-time systems. On this basis, some recommendations of appropriate
checkpointing in lockstep roll-back technique is presented.

Keywords: Fault-tolerant, lockstep, fault detection, fault masking, roll-back, roll-forward, SEU,
reliability, safety, embedded, real-time, RTOS

1. INTRODUCTION

Real-time operating systems are used in safety-critical, in-
dustrial, medical and automotive applications. Execution
time of every operation has to be bounded in hard real-
time systems and lowered in soft real-time systems. This
OS is usually built in the embedded system.

The current challenge is to do more computational oper-
ations in lesser bounded time. Therefore more powerful
devices are used as a control unit of the system. Systems
are bigger and more complex, therefore more bugs can
occur. Because of EM pollution, there is a higher risk
of SEU (Single-Event Upsets) causing errors on memories
and buses. Therefore more fault-tolerant techniques are
used to eliminate and to detect errors caused by hard-
ware and software defects. One of the main fault-tolerant
technique is based on using proved hardware and software
by time and by the count of applications. This technique is
suppressed using new powerful processors. Therefore there
has to be more sophisticated error detectors.

Fault avoidance is the preferred way how to eliminate
errors. It consist of techniques like systematic architec-
ture, hardware and software dimensioning, documenta-
tion, or system modelling and offline testing. Then it is
crucial to focus on fault detection using online testing,
monitoring, etc. When an error is detected, it should be
masked using reconfiguration or redundancy.

The most used and the simplest technique to detect system
hangs and deadlocks is a watchdog. It will raise an error

when the internal time counter is not reset and exceeds
a threshold. Its reaction threshold is higher when RR
(Round Robin) scheduler is used. In [Pohronská and
Krajčovič (2011)], one hardware watchdog per each thread
is used which should eliminate false positive error detection
causing by overload. On the other hand, there are many
possible faulty scenarios which are not detected.

Application faults are mostly caused by SEU, voltage dips
or hardware malfunction so the most used technique is so
called lockstep. The basic idea is that two same CPU are
assumed to perform same operations using a mutual clock
source. Inputs are the same and outputs are compared.
On a discrepancy, an error is signalled. There are some
modifications like delaying of one core [Troppmann and
Fuessl (2008)], defining one core as the leading and sec-
ond as the paired [Horst et al. (2001)], or a comparison
at the transaction level [James-Roxby and Wittig (2013)].
A reaction to this error is system reset or overall reconfigu-
ration because the faulty core is not known. This technique
has a vulnerability in common cause faults like software
bugs, input malfunction or hardware input malfunction.

The problem of the not known faulty core is solved using
TMR (Triple Modular Redundancy) that masks a fault
in one of three cores using an output voter. The voter
calculates median of all values three-times and the fault
is masked. This technique needs three CPU cores so it
is resource exhausting. In putting pressure on low price,
there is a need to provide the same level of reliability
and availability using less resources, e.g. enhanced mon-

14th IFAC Conference on Programmable Devices and Embedded
Systems
October 5-7, 2016. Brno, Czech Republic

Copyright © 2016 IFAC 413

Increasing Safety and Reliability
of Roll-back and Roll-forward Lockstep
Technique for Use in Real-time Systems

J. Arm ∗ Z. Bradac ∗∗ R. Stohl ∗∗∗

∗ Department of Control and Instrumentation, Faculty of Electrical
Engineering and Communication, Brno University of Technology,

Brno, Czech Republic (e-mail: jakub.arm@phd.feec.vutbr.cz)
∗∗ Department of Control and Instrumentation, Faculty of Electrical
Engineering and Communication, Brno University of Technology,

Brno, Czech Republic (e-mail: bradac@feec.vutbr.cz)
∗∗∗ Department of Control and Instrumentation, Faculty of Electrical
Engineering and Communication, Brno University of Technology,

Brno, Czech Republic (e-mail: stohl@feec.vutbr.cz)

Abstract: This work focuses on the roll-back and roll-forward lockstep architecture that are
techniques to detect faults like SEU, voltage dips or another impacting to system misbehaviour.
These techniques are explored using FMEA analysis and on its basis, some propose is presented
that improves reliability and safety of each technique. In this case, availability is lowered
as a trade of higher reliability and safety. These techniques are also explored from the point
of view using in real-time systems. On this basis, some recommendations of appropriate
checkpointing in lockstep roll-back technique is presented.

Keywords: Fault-tolerant, lockstep, fault detection, fault masking, roll-back, roll-forward, SEU,
reliability, safety, embedded, real-time, RTOS

1. INTRODUCTION

Real-time operating systems are used in safety-critical, in-
dustrial, medical and automotive applications. Execution
time of every operation has to be bounded in hard real-
time systems and lowered in soft real-time systems. This
OS is usually built in the embedded system.

The current challenge is to do more computational oper-
ations in lesser bounded time. Therefore more powerful
devices are used as a control unit of the system. Systems
are bigger and more complex, therefore more bugs can
occur. Because of EM pollution, there is a higher risk
of SEU (Single-Event Upsets) causing errors on memories
and buses. Therefore more fault-tolerant techniques are
used to eliminate and to detect errors caused by hard-
ware and software defects. One of the main fault-tolerant
technique is based on using proved hardware and software
by time and by the count of applications. This technique is
suppressed using new powerful processors. Therefore there
has to be more sophisticated error detectors.

Fault avoidance is the preferred way how to eliminate
errors. It consist of techniques like systematic architec-
ture, hardware and software dimensioning, documenta-
tion, or system modelling and offline testing. Then it is
crucial to focus on fault detection using online testing,
monitoring, etc. When an error is detected, it should be
masked using reconfiguration or redundancy.

The most used and the simplest technique to detect system
hangs and deadlocks is a watchdog. It will raise an error

when the internal time counter is not reset and exceeds
a threshold. Its reaction threshold is higher when RR
(Round Robin) scheduler is used. In [Pohronská and
Krajčovič (2011)], one hardware watchdog per each thread
is used which should eliminate false positive error detection
causing by overload. On the other hand, there are many
possible faulty scenarios which are not detected.

Application faults are mostly caused by SEU, voltage dips
or hardware malfunction so the most used technique is so
called lockstep. The basic idea is that two same CPU are
assumed to perform same operations using a mutual clock
source. Inputs are the same and outputs are compared.
On a discrepancy, an error is signalled. There are some
modifications like delaying of one core [Troppmann and
Fuessl (2008)], defining one core as the leading and sec-
ond as the paired [Horst et al. (2001)], or a comparison
at the transaction level [James-Roxby and Wittig (2013)].
A reaction to this error is system reset or overall reconfigu-
ration because the faulty core is not known. This technique
has a vulnerability in common cause faults like software
bugs, input malfunction or hardware input malfunction.

The problem of the not known faulty core is solved using
TMR (Triple Modular Redundancy) that masks a fault
in one of three cores using an output voter. The voter
calculates median of all values three-times and the fault
is masked. This technique needs three CPU cores so it
is resource exhausting. In putting pressure on low price,
there is a need to provide the same level of reliability
and availability using less resources, e.g. enhanced mon-

14th IFAC Conference on Programmable Devices and Embedded
Systems
October 5-7, 2016. Brno, Czech Republic

Copyright © 2016 IFAC 413



414	 J. Arm et al. / IFAC-PapersOnLine 49-25 (2016) 413–418

itors or improved lock-step. In [Psarakis et al. (2014)]
and [Gomez-Cornejo et al. (2013)], there are voters even
on each segment of the processor pipeline.

Research about the lockstep and other fault-tolerant ar-
chitectures have been risen due to FPGA. Using FPGA,
more softcores can be implemented, another logic can be
invented, and all can be tested using hardware logic fault
injection or using special FPGA chip instructions. FPGA
is used as a development platform for testing or as a final
hardware solution where faults of the FPGA chip has to
be considered.

Currently, there are many approaches of enhanced lockstep
architecture which try to solve its drawbacks. For only
error detecting, time shifted lockstep has good test results.
But, when higher availability is needed, a complete fault-
tolerant architecture has to be used so some automatic
reaction has to be implemented like hot-swap, softcore
reconfiguration (roll-forward) or lockstep roll-back (con-
text recovery). Roll-back (see Fig. 1) is an operation which
returns to the last saved fault-free context. This context
called checkpoint is saved after the certain defined time
or thread major period. Shortly before this operation,
some tests can also be done. These techniques except
hot-swap are good in comparison of reliability to price,
on the other hand, provide lesser availability than m
out of n systems.

Fig. 1. Roll-back lockstep recovery process [Pham et al.
(2012)]

2. RELATED WORK

In [Hong et al. (2012)], a hardware mechanism to enhance
reliability using ECC (Error-Correcting Code) and TMR.
ECC is usually capable of detecting double bit errors,
or correcting single bit errors. TMR technique hardens
highly the fault tolerance of used soft cores. ECC focuses
on memories which are the most radiation susceptible
resources. Using these techniques, processors are immu-
nised to SEU without halting because of self-recoverable
program memory. TMR technique provides good reliability
and availability but it is much more resource demanding
than other techniques.

In [Reorda et al. (2009)], an approach to an enhanced lock-
step technique is presented. One of CPU is master which
output is used. In hardware, the checker CPU output is
compared with the master core output. In case of corre-
spondence, the current context is saved as a checkpoint.
In case of discrepancy, the context of the master core is
restored. This technique is called roll-back checkpointing.
When the roll-back operation is performed, program ex-
ecution will go back to the last correct saved context.
The context checkpointing can be triggered by bus activity
or by time. The context saving and restoring are imple-
mented using DMA (Direct Memory Access) mechanism.

This solution provides the good reliability but the avail-
ability is lowered by roll-back operation. Performed ex-
periments show that 15 % of the injected faults (random
injection of SEU) are detected by OS, 1 % are transformed
to permanent faults causing a faulty state and 84 % are
effect-less or corrected.

In [Zabihi et al. (2015)] and [Abate et al. (2009)], a task
replication-based method which can detect and correct
SEUs is presented. The proposed multiprocessor system
replicates a subset of tasks and their results are compared.
The replication is performed on CPU idle. When an error
is detected, all processors are reconfigured with fault-free
bitstream. Then all processors return to the last free-
error state that was verified before. According to tests,
the performance overhead of the proposed method is about
70 % lower than of lockstep algorithm when the same
level of reliability. Moreover, no extra area overhead is
needed except the multicore processor. The redundant
operations are done when a CPU is idle so there has to be
a performance reserve.

In [Kottke and Steininger (2004)], a time shifted lock-
step mechanism is improved. The master core is delayed
by 1.5 clock source. Signals on CPU buses are set only
in case of correct compared output. On used set of injected
errors, this type of lockstep detects all errors.

In [Baleani et al. (2003)], some architectures using lock-
step and loosely-synchronized dual processor are presented
and discussed. Authors propose single-chip 4-core solution
for fault tolerant automotive application based on two fail-
silent channels which can be lock-stepped or loosely syn-
chronized. All cores use all memories connected via cross-
bar bus architecture.

In [Safarulla and Manilal (2014)], an error is detected
in lockstep architecture by providing shifted inputs to one
core assuming that back-shifted outputs will be compara-
ble.

In [Pham et al. (2012)], the roll-forward lockstep mecha-
nism is presented. In case of error, the master core per-
forms a test to detect the faulty core. Then the speci-
fied FPGA frame is reconfigured or the whole module is
reconfigured to another place in case of persistent error.
After that, recovery process is triggered using interrupt.
The fault-free core saves its context, then the second core
restores its context and after a synchronization signal,
the both cores are started. The whole process is on Fig. 2.

A duration of the recovery process is claimed to be
a value of 4 ms. According to the article, a probability
of occurrence of one sensitive SEU during this time in
another processor (while one is being reconfigured) is
computed as a value of 2 · 10−17. But another error can
occur like voltage dip. Moreover, when some other SEU
error occurs despite the small calculated probability, this
error will be undetected and can cause error chain.

In [Zabihi et al. (2015)], the safety-critical task are repli-
cated, executed more times and compared. This uses idle
time of a CPU to create a partial time redundant sys-
tem. This approach is very low cost and increases system
efficiency. But in case of overload, the fault detection
technique will be inaccessible.

2016 IFAC PDES
October 5-7, 2016. Brno, Czech Republic

414



Download English Version:

https://daneshyari.com/en/article/5002881

Download Persian Version:

https://daneshyari.com/article/5002881

Daneshyari.com

https://daneshyari.com/en/article/5002881
https://daneshyari.com/article/5002881
https://daneshyari.com

