
IFAC-PapersOnLine 49-25 (2016) 505–510

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2016.12.066

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Tool System and Algorithms for Scheduling of Computations in

Integrated Modular Onboard Embedded Systems

Vasily V. Balashov*, Valery A. Kostenko*, Vadim A. Balakhanov*, Sergei A. Tutelian*

* Department of Computational Mathematics and Cybernetics,

Lomonosov Moscow State University,

Leninskie Gory, MSU, 1, Bldg. 52, Room 764, Moscow, Russia,

(e-mail: {hbd, kost, baldis}@lvk.cs.msu.su, sergei.tutelian@yandex.ru)

Abstract: Scheduling of computations is an essential step in the process of real-time systems design. In

this paper, the scheduling problem is addressed for integrated modular onboard embedded systems

(IMOES). This class of systems uses a mix of static and dynamic scheduling. A family of algorithms for

workload distribution and schedule construction for IMOES is presented, along with the results of their

experimental evaluation on synthetic and real-world data. The algorithms are implemented in a tool

system, which is accepted for operation by one of the leading Russian aircraft design companies.

Keywords: Real-Time Multiprocessor Systems; Microprocessor Based Control Systems;

Scheduling Algorithms; Design Tools and Application Software.

1. INTRODUCTION

Onboard embedded systems for aircraft and naval purposes

are responsible for control of vehicle subsystems and for

processing of control tasks such as navigation, collision

avoidance, etc. Instead of having federated architecture with

dedicated hardware and software for each logical subsystem,

the current trend for onboard systems is to run the software of

multiple subsystems on a unified platform with standard API

and modular hardware, which constitute integrated modular

architecture (Wind River / IEEE, 2008). Such integrated

modular onboard embedded systems (IMOES) include from

several to dozens of modules, each usually containing a

multicore CPU. Modules are connected by a network,

typically a switched one with support for virtual channels

(Schaadt, 2007). Workload for such system consists of a set

of periodic tasks with data dependencies. A dependency

between tasks corresponds to a message to be transferred

between the sender task and the receiver task. In this paper

we consider partitioned task sets in which tasks are grouped

into subsets (partitions), each of which represents an

application.

As IMOES are inherently multiprocessor systems with

unified interface for application tasks, a problem of workload

scheduling arises, which includes distribution of partitions to

CPU cores and construction of partitions execution

schedules. IMOES of a modern aircraft runs several hundred

tasks with complex data dependencies, so the scheduling

problem needs tool support.

In this paper we present a tool system for scheduling of

computations in IMOES and describe the scheduling

algorithms implemented in this system.

Results of tool and algorithms evaluation are also presented,

both for synthetic tasks sets and a task set from a real-world

IMOES.

2. STRUCTURE OF THE SCHEDULE

A two-level scheduling scheme is used in IMOES. On the top

level, partitions execution is organized via static schedule.

For each partition, there is a set of execution windows, i.e.

time intervals in which tasks from the partition are executed.

We consider systems in which every partition is statically

bound to a specific CPU core, thus all execution windows for

the partition belong to that core. Partitions binding to CPU

cores, as well as the set of execution windows, are to be

constructed in advance, prior to the target system startup.

Within an execution window, tasks from the corresponding

partition are scheduled dynamically according to their fixed

priorities. This constitutes the bottom level of the scheduling

scheme. A task which depends on data from another task with

the same frequency (from the same or from another partition)

can start only after data arrival. This is a synchronous

dependency between tasks. A data dependency between tasks

with different frequencies does not force the receiver task to

wait for input data (asynchronous dependency).

There is a set of constraints on the partitions execution

windows defined by the target system (IMOES) specifics.

For instance, there can be lower and upper limits on the

execution window duration.

3. SCHEDULING PROBLEM

The scheduling problem for a given IMOES and workload

(set of periodic tasks grouped into partitions) breaks down

into following subproblems:

This work is partially supported by the Russian Foundation for Basic

Research under grant №16-07-01237.

14th IFAC Conference on Programmable Devices and Embedded
Systems
October 5-7, 2016. Brno, Czech Republic

Copyright © 2016 IFAC 505

Tool System and Algorithms for Scheduling of Computations in

Integrated Modular Onboard Embedded Systems

Vasily V. Balashov*, Valery A. Kostenko*, Vadim A. Balakhanov*, Sergei A. Tutelian*

* Department of Computational Mathematics and Cybernetics,

Lomonosov Moscow State University,

Leninskie Gory, MSU, 1, Bldg. 52, Room 764, Moscow, Russia,

(e-mail: {hbd, kost, baldis}@lvk.cs.msu.su, sergei.tutelian@yandex.ru)

Abstract: Scheduling of computations is an essential step in the process of real-time systems design. In

this paper, the scheduling problem is addressed for integrated modular onboard embedded systems

(IMOES). This class of systems uses a mix of static and dynamic scheduling. A family of algorithms for

workload distribution and schedule construction for IMOES is presented, along with the results of their

experimental evaluation on synthetic and real-world data. The algorithms are implemented in a tool

system, which is accepted for operation by one of the leading Russian aircraft design companies.

Keywords: Real-Time Multiprocessor Systems; Microprocessor Based Control Systems;

Scheduling Algorithms; Design Tools and Application Software.

1. INTRODUCTION

Onboard embedded systems for aircraft and naval purposes

are responsible for control of vehicle subsystems and for

processing of control tasks such as navigation, collision

avoidance, etc. Instead of having federated architecture with

dedicated hardware and software for each logical subsystem,

the current trend for onboard systems is to run the software of

multiple subsystems on a unified platform with standard API

and modular hardware, which constitute integrated modular

architecture (Wind River / IEEE, 2008). Such integrated

modular onboard embedded systems (IMOES) include from

several to dozens of modules, each usually containing a

multicore CPU. Modules are connected by a network,

typically a switched one with support for virtual channels

(Schaadt, 2007). Workload for such system consists of a set

of periodic tasks with data dependencies. A dependency

between tasks corresponds to a message to be transferred

between the sender task and the receiver task. In this paper

we consider partitioned task sets in which tasks are grouped

into subsets (partitions), each of which represents an

application.

As IMOES are inherently multiprocessor systems with

unified interface for application tasks, a problem of workload

scheduling arises, which includes distribution of partitions to

CPU cores and construction of partitions execution

schedules. IMOES of a modern aircraft runs several hundred

tasks with complex data dependencies, so the scheduling

problem needs tool support.

In this paper we present a tool system for scheduling of

computations in IMOES and describe the scheduling

algorithms implemented in this system.

Results of tool and algorithms evaluation are also presented,

both for synthetic tasks sets and a task set from a real-world

IMOES.

2. STRUCTURE OF THE SCHEDULE

A two-level scheduling scheme is used in IMOES. On the top

level, partitions execution is organized via static schedule.

For each partition, there is a set of execution windows, i.e.

time intervals in which tasks from the partition are executed.

We consider systems in which every partition is statically

bound to a specific CPU core, thus all execution windows for

the partition belong to that core. Partitions binding to CPU

cores, as well as the set of execution windows, are to be

constructed in advance, prior to the target system startup.

Within an execution window, tasks from the corresponding

partition are scheduled dynamically according to their fixed

priorities. This constitutes the bottom level of the scheduling

scheme. A task which depends on data from another task with

the same frequency (from the same or from another partition)

can start only after data arrival. This is a synchronous

dependency between tasks. A data dependency between tasks

with different frequencies does not force the receiver task to

wait for input data (asynchronous dependency).

There is a set of constraints on the partitions execution

windows defined by the target system (IMOES) specifics.

For instance, there can be lower and upper limits on the

execution window duration.

3. SCHEDULING PROBLEM

The scheduling problem for a given IMOES and workload

(set of periodic tasks grouped into partitions) breaks down

into following subproblems:

This work is partially supported by the Russian Foundation for Basic

Research under grant №16-07-01237.

14th IFAC Conference on Programmable Devices and Embedded
Systems
October 5-7, 2016. Brno, Czech Republic

Copyright © 2016 IFAC 505

Tool System and Algorithms for Scheduling of Computations in

Integrated Modular Onboard Embedded Systems

Vasily V. Balashov*, Valery A. Kostenko*, Vadim A. Balakhanov*, Sergei A. Tutelian*

* Department of Computational Mathematics and Cybernetics,

Lomonosov Moscow State University,

Leninskie Gory, MSU, 1, Bldg. 52, Room 764, Moscow, Russia,

(e-mail: {hbd, kost, baldis}@lvk.cs.msu.su, sergei.tutelian@yandex.ru)

Abstract: Scheduling of computations is an essential step in the process of real-time systems design. In

this paper, the scheduling problem is addressed for integrated modular onboard embedded systems

(IMOES). This class of systems uses a mix of static and dynamic scheduling. A family of algorithms for

workload distribution and schedule construction for IMOES is presented, along with the results of their

experimental evaluation on synthetic and real-world data. The algorithms are implemented in a tool

system, which is accepted for operation by one of the leading Russian aircraft design companies.

Keywords: Real-Time Multiprocessor Systems; Microprocessor Based Control Systems;

Scheduling Algorithms; Design Tools and Application Software.

1. INTRODUCTION

Onboard embedded systems for aircraft and naval purposes

are responsible for control of vehicle subsystems and for

processing of control tasks such as navigation, collision

avoidance, etc. Instead of having federated architecture with

dedicated hardware and software for each logical subsystem,

the current trend for onboard systems is to run the software of

multiple subsystems on a unified platform with standard API

and modular hardware, which constitute integrated modular

architecture (Wind River / IEEE, 2008). Such integrated

modular onboard embedded systems (IMOES) include from

several to dozens of modules, each usually containing a

multicore CPU. Modules are connected by a network,

typically a switched one with support for virtual channels

(Schaadt, 2007). Workload for such system consists of a set

of periodic tasks with data dependencies. A dependency

between tasks corresponds to a message to be transferred

between the sender task and the receiver task. In this paper

we consider partitioned task sets in which tasks are grouped

into subsets (partitions), each of which represents an

application.

As IMOES are inherently multiprocessor systems with

unified interface for application tasks, a problem of workload

scheduling arises, which includes distribution of partitions to

CPU cores and construction of partitions execution

schedules. IMOES of a modern aircraft runs several hundred

tasks with complex data dependencies, so the scheduling

problem needs tool support.

In this paper we present a tool system for scheduling of

computations in IMOES and describe the scheduling

algorithms implemented in this system.

Results of tool and algorithms evaluation are also presented,

both for synthetic tasks sets and a task set from a real-world

IMOES.

2. STRUCTURE OF THE SCHEDULE

A two-level scheduling scheme is used in IMOES. On the top

level, partitions execution is organized via static schedule.

For each partition, there is a set of execution windows, i.e.

time intervals in which tasks from the partition are executed.

We consider systems in which every partition is statically

bound to a specific CPU core, thus all execution windows for

the partition belong to that core. Partitions binding to CPU

cores, as well as the set of execution windows, are to be

constructed in advance, prior to the target system startup.

Within an execution window, tasks from the corresponding

partition are scheduled dynamically according to their fixed

priorities. This constitutes the bottom level of the scheduling

scheme. A task which depends on data from another task with

the same frequency (from the same or from another partition)

can start only after data arrival. This is a synchronous

dependency between tasks. A data dependency between tasks

with different frequencies does not force the receiver task to

wait for input data (asynchronous dependency).

There is a set of constraints on the partitions execution

windows defined by the target system (IMOES) specifics.

For instance, there can be lower and upper limits on the

execution window duration.

3. SCHEDULING PROBLEM

The scheduling problem for a given IMOES and workload

(set of periodic tasks grouped into partitions) breaks down

into following subproblems:

This work is partially supported by the Russian Foundation for Basic

Research under grant №16-07-01237.

14th IFAC Conference on Programmable Devices and Embedded
Systems
October 5-7, 2016. Brno, Czech Republic

Copyright © 2016 IFAC 505

Tool System and Algorithms for Scheduling of Computations in

Integrated Modular Onboard Embedded Systems

Vasily V. Balashov*, Valery A. Kostenko*, Vadim A. Balakhanov*, Sergei A. Tutelian*

* Department of Computational Mathematics and Cybernetics,

Lomonosov Moscow State University,

Leninskie Gory, MSU, 1, Bldg. 52, Room 764, Moscow, Russia,

(e-mail: {hbd, kost, baldis}@lvk.cs.msu.su, sergei.tutelian@yandex.ru)

Abstract: Scheduling of computations is an essential step in the process of real-time systems design. In

this paper, the scheduling problem is addressed for integrated modular onboard embedded systems

(IMOES). This class of systems uses a mix of static and dynamic scheduling. A family of algorithms for

workload distribution and schedule construction for IMOES is presented, along with the results of their

experimental evaluation on synthetic and real-world data. The algorithms are implemented in a tool

system, which is accepted for operation by one of the leading Russian aircraft design companies.

Keywords: Real-Time Multiprocessor Systems; Microprocessor Based Control Systems;

Scheduling Algorithms; Design Tools and Application Software.

1. INTRODUCTION

Onboard embedded systems for aircraft and naval purposes

are responsible for control of vehicle subsystems and for

processing of control tasks such as navigation, collision

avoidance, etc. Instead of having federated architecture with

dedicated hardware and software for each logical subsystem,

the current trend for onboard systems is to run the software of

multiple subsystems on a unified platform with standard API

and modular hardware, which constitute integrated modular

architecture (Wind River / IEEE, 2008). Such integrated

modular onboard embedded systems (IMOES) include from

several to dozens of modules, each usually containing a

multicore CPU. Modules are connected by a network,

typically a switched one with support for virtual channels

(Schaadt, 2007). Workload for such system consists of a set

of periodic tasks with data dependencies. A dependency

between tasks corresponds to a message to be transferred

between the sender task and the receiver task. In this paper

we consider partitioned task sets in which tasks are grouped

into subsets (partitions), each of which represents an

application.

As IMOES are inherently multiprocessor systems with

unified interface for application tasks, a problem of workload

scheduling arises, which includes distribution of partitions to

CPU cores and construction of partitions execution

schedules. IMOES of a modern aircraft runs several hundred

tasks with complex data dependencies, so the scheduling

problem needs tool support.

In this paper we present a tool system for scheduling of

computations in IMOES and describe the scheduling

algorithms implemented in this system.

Results of tool and algorithms evaluation are also presented,

both for synthetic tasks sets and a task set from a real-world

IMOES.

2. STRUCTURE OF THE SCHEDULE

A two-level scheduling scheme is used in IMOES. On the top

level, partitions execution is organized via static schedule.

For each partition, there is a set of execution windows, i.e.

time intervals in which tasks from the partition are executed.

We consider systems in which every partition is statically

bound to a specific CPU core, thus all execution windows for

the partition belong to that core. Partitions binding to CPU

cores, as well as the set of execution windows, are to be

constructed in advance, prior to the target system startup.

Within an execution window, tasks from the corresponding

partition are scheduled dynamically according to their fixed

priorities. This constitutes the bottom level of the scheduling

scheme. A task which depends on data from another task with

the same frequency (from the same or from another partition)

can start only after data arrival. This is a synchronous

dependency between tasks. A data dependency between tasks

with different frequencies does not force the receiver task to

wait for input data (asynchronous dependency).

There is a set of constraints on the partitions execution

windows defined by the target system (IMOES) specifics.

For instance, there can be lower and upper limits on the

execution window duration.

3. SCHEDULING PROBLEM

The scheduling problem for a given IMOES and workload

(set of periodic tasks grouped into partitions) breaks down

into following subproblems:

This work is partially supported by the Russian Foundation for Basic

Research under grant №16-07-01237.

14th IFAC Conference on Programmable Devices and Embedded
Systems
October 5-7, 2016. Brno, Czech Republic

Copyright © 2016 IFAC 505

Tool System and Algorithms for Scheduling of Computations in

Integrated Modular Onboard Embedded Systems

Vasily V. Balashov*, Valery A. Kostenko*, Vadim A. Balakhanov*, Sergei A. Tutelian*

* Department of Computational Mathematics and Cybernetics,

Lomonosov Moscow State University,

Leninskie Gory, MSU, 1, Bldg. 52, Room 764, Moscow, Russia,

(e-mail: {hbd, kost, baldis}@lvk.cs.msu.su, sergei.tutelian@yandex.ru)

Abstract: Scheduling of computations is an essential step in the process of real-time systems design. In

this paper, the scheduling problem is addressed for integrated modular onboard embedded systems

(IMOES). This class of systems uses a mix of static and dynamic scheduling. A family of algorithms for

workload distribution and schedule construction for IMOES is presented, along with the results of their

experimental evaluation on synthetic and real-world data. The algorithms are implemented in a tool

system, which is accepted for operation by one of the leading Russian aircraft design companies.

Keywords: Real-Time Multiprocessor Systems; Microprocessor Based Control Systems;

Scheduling Algorithms; Design Tools and Application Software.

1. INTRODUCTION

Onboard embedded systems for aircraft and naval purposes

are responsible for control of vehicle subsystems and for

processing of control tasks such as navigation, collision

avoidance, etc. Instead of having federated architecture with

dedicated hardware and software for each logical subsystem,

the current trend for onboard systems is to run the software of

multiple subsystems on a unified platform with standard API

and modular hardware, which constitute integrated modular

architecture (Wind River / IEEE, 2008). Such integrated

modular onboard embedded systems (IMOES) include from

several to dozens of modules, each usually containing a

multicore CPU. Modules are connected by a network,

typically a switched one with support for virtual channels

(Schaadt, 2007). Workload for such system consists of a set

of periodic tasks with data dependencies. A dependency

between tasks corresponds to a message to be transferred

between the sender task and the receiver task. In this paper

we consider partitioned task sets in which tasks are grouped

into subsets (partitions), each of which represents an

application.

As IMOES are inherently multiprocessor systems with

unified interface for application tasks, a problem of workload

scheduling arises, which includes distribution of partitions to

CPU cores and construction of partitions execution

schedules. IMOES of a modern aircraft runs several hundred

tasks with complex data dependencies, so the scheduling

problem needs tool support.

In this paper we present a tool system for scheduling of

computations in IMOES and describe the scheduling

algorithms implemented in this system.

Results of tool and algorithms evaluation are also presented,

both for synthetic tasks sets and a task set from a real-world

IMOES.

2. STRUCTURE OF THE SCHEDULE

A two-level scheduling scheme is used in IMOES. On the top

level, partitions execution is organized via static schedule.

For each partition, there is a set of execution windows, i.e.

time intervals in which tasks from the partition are executed.

We consider systems in which every partition is statically

bound to a specific CPU core, thus all execution windows for

the partition belong to that core. Partitions binding to CPU

cores, as well as the set of execution windows, are to be

constructed in advance, prior to the target system startup.

Within an execution window, tasks from the corresponding

partition are scheduled dynamically according to their fixed

priorities. This constitutes the bottom level of the scheduling

scheme. A task which depends on data from another task with

the same frequency (from the same or from another partition)

can start only after data arrival. This is a synchronous

dependency between tasks. A data dependency between tasks

with different frequencies does not force the receiver task to

wait for input data (asynchronous dependency).

There is a set of constraints on the partitions execution

windows defined by the target system (IMOES) specifics.

For instance, there can be lower and upper limits on the

execution window duration.

3. SCHEDULING PROBLEM

The scheduling problem for a given IMOES and workload

(set of periodic tasks grouped into partitions) breaks down

into following subproblems:

This work is partially supported by the Russian Foundation for Basic

Research under grant №16-07-01237.

14th IFAC Conference on Programmable Devices and Embedded
Systems
October 5-7, 2016. Brno, Czech Republic

Copyright © 2016 IFAC 505

506 Vasily V. Balashov et al. / IFAC-PapersOnLine 49-25 (2016) 505–510

1) distribute the workload, i.e. bind the partitions to CPU

cores;

2) construct the schedule of partitions execution windows.

There are following constraints on partitions binding:

 binding for some partitions can be restricted to a subset

of CPU cores, e.g. cores of a specific module;

 total load for a core must not exceed a given limit, which

can be defined individually for each core;

 each partition must be bound do a single CPU core.

In course of IMOES evolution, the set of partitions can be

extended. So the algorithms for workload distribution must

support incremental mode in which previously constructed

binding for partitions (all or some of them) cannot be altered.

CPU core load by a partition is calculated as a sum
i

ii cf ,

where if is the task frequency and ic is its worst case

execution time (WCET). For every task, its WCET is a part

of input data for the scheduling problem; for different types

of CPU cores used in the target system, WCET for the same

task may be different.

We consider workload distribution as an optimization

problem with network load as the objective function to be

minimized. The network load is calculated as the total size of

messages transferred between modules during a single

iteration of the schedule, the duration of which is estimated as

the least common multiple of the tasks’ periods. Messages

between tasks running on the same module are transferred

through the module’s local memory and do not contribute to

the network load.

Constraints on the schedule of partitions execution windows

are as follows. For each core, the execution windows must

not overlap; exactly one partition can be assigned to an

execution window; for each core, only partitions bound to

this core can be assigned to execution windows for this core;

there are lower and upper limits on the execution window

duration, common for all cores; the set of execution windows

for all cores of the same module must be the same.

The exact set of constraints on workload distribution and on

the schedule of partitions execution windows is determined

by the specifics of the target IMOES and may vary from

system to system. The constraints described above

correspond to an IMOES of a modern Russian aircraft and

can be considered typical for an onboard computer system.

As the tasks within execution windows are scheduled

dynamically, the schedule of windows must guarantee that all

of the tasks’ executions are performed within deadlines under

control of a given dynamic scheduler. Single execution of a

periodic task is called a job. If T is the task period (reciprocal

of its frequency), i is the number of task iteration (numbering

starts from 1), then the deadline interval for the job is

 TiTi ;)1(.

In terms of jobs, the schedule of windows must guarantee that

all jobs of all tasks are executed within corresponding

deadline intervals. This can be checked via construction of a

job execution sequence taking into account tasks’ priorities

and data dependencies, and assuming that each job’s

execution duration (not counting preemption and waiting for

input data) equals to task’s WCET.

4. OVERVIEW OF EXISTING SOLUTIONS

Since the scheduling problem for IMOES is divided into two

sufficiently different subproblems (workload distribution and

execution windows schedule construction), we will consider

existing solutions for these subproblems separately.

The workload distribution problem for IMOES resembles the

multiple container packing problem (MCPP). The latter is the

problem of choosing several disjoint subsets of n items to be

packed into distinct containers, such that the total value of the

selected items is maximized, without exceeding the capacity

of each of the containers (Raidl, 1999). In our case partitions

correspond to items, CPU cores correspond to containers.

Item’s volume is the partition’s contribution to the CPU core

utilization; item’s cost is the part of traffic which becomes

“internal” for the module when the item is placed in the

container (i.e. the partition is assigned to a CPU core).

However the problem statement differs from traditional

MCPP (with fixed volumes and costs of objects). First, the

volume of an item depends on the choice of the container, as

a task can have different WCETs for different types of CPU

cores. Second, the value of an item depends on the

container’s contents, i.e. the set of other items in the

container.

Due to this difference in the problem statement, existing

algorithms for solving of MCPP cannot be used “as is”.

Following approaches applicable to MCPP were taken as the

base for our workload distribution algorithms:

 greedy heuristic search – a common way to quickly find

an acceptable solution when the constraints are not too

strict; see (Crainic et al, 2012) for example of its

application to MCPP;

 branch-and-bound method – looks for the exact optimal

solution, working time and scalability greatly depends on

the quality of search space pruning; applied to MCPP in

(Fukunaga et al, 2007);

 genetic algorithms – chosen for presumably good

scalability (opposite to branch-and-bound) and ability to

avoid dead ends during the search (opposite to greedy

heuristics); applied to MCPP in (Raidl, 1999).

These basic approaches were modified to match the workload

distribution problem stated above; see Section 5 for

description of the resulting algorithms.

As IMOES, including ARINC 653-based avionics systems,

are becoming more widely adopted, there is an increasing

amount of research on the techniques for schedule

construction for such systems. However in most of the

published approaches either the workload is analysed in

2016 IFAC PDES
October 5-7, 2016. Brno, Czech Republic

506

Download English Version:

https://daneshyari.com/en/article/5002896

Download Persian Version:

https://daneshyari.com/article/5002896

Daneshyari.com

https://daneshyari.com/en/article/5002896
https://daneshyari.com/article/5002896
https://daneshyari.com

