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Abstract: In the low copy number regime, the dynamics of chemically reacting systems is
accurately modeled as a continuous-time Markov chain and the associated probability density
obeys the chemical master equation. Parameter inference in such models is very challenging
for various reasons: large levels of noise implies that large amount of data is required for
identification, the presence of transient phases may shadow subsets of the parameters, and
accurate likelihood estimation requires the solutions to master equations. The latter is itself
a computational very challenging problem and although many approximate computational
methods have been proposed previously, the final implied accuracy in estimated rate parameters
is difficult to assess.
In this paper we look at the problem from the perspective of the Markov chain Monte
Carlo method. Assuming the existence of a practically exact, but expensive, master equations
solver, together with a cheaper, approximate alternative, we pick up the idea of preconditioned
Metropolis sampling. Here the solutions of full master equations almost always imply an accepted
step in the Markov chain, and consequently, step rejections are much cheaper. We investigate
the properties of this technique theoretically and via illustrative examples. Whenever a suitable
preconditioner is available, large savings in computational times are possible while the accuracy
in deduced parameters is identical to using the exact likelihood.

Keywords: Chemical Master Equation, Preconditioning Markov Chain Monte Carlo,
Metropolis Hastings.

1. INTRODUCTION

Systems biology is working towards describing complex
interactions and processes in biology by Bio-Chemical Re-
action Networks (Biological Networks for short). Through
advances in imaging and sequencing technologies, biolo-
gists are able to scope deeper and describe critical bi-
ological processes as paths on a complex biological net-
work. Current systems biology has been able to represent
metabolic processes of cells Kholodenko (2000), stem cell
fate paths MacArthur et al. (2009), gene transcriptions
Srivastava et al. (2002) and translation regulation pro-
cesses as biological networks. Blake et al. (2003) In the
last three decades it was shown by experimentalists that
the observed variation in the data can be attributed to
the inherent stochasticity in parts of the network where
low copy numbers are present.

The modeling of biological networks with intrinsic stochas-
ticity gives realistic forecasts of the system behavior. How-
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ever, to go further and use experimental data to infer the
reaction rates of the underlying model is a computationally
and mathematically challenging task. The critical aspect is
the computation of the likelihood function. The likelihood
function describes the conditional probability of observing
the data for a given parameter value. In engineering set-
tings where the noise is understood to be Gaussian and
additive, the likelihood function can be easily approxi-
mated by a mean dynamics of the system and some fixed
variance. However, if the system has intrinsic stochasticity,
then computing the likelihood requires the solutions to
equations such as the Chemical Master Equation (CME) or
the Fokker Planck equation. These equations are difficult
to solve numerically as they are prone to the curse of
dimensionality Higham (2008); Engblom (2009a).

While many numerical methods have been investigated to
solve the CME for given set of parameters, the accuracy of
these methods for the purpose of inferring parameters from
some given data is unclear. Let us see why: let LCME(O|σ)
be the likelihood function, given by the solutions of the
CME, that data O is observed for the parameter σ.
Similarly, let L�(O|σ) denote an approximate likelihood
constructed using some approximation of the CME. We
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say that the likelihood L� is biased if

‖LCME(O|σ)− L�(O|σ)‖ = f(σ), (1)

where f(·) is not a constant function. For many numerical
approximations of the CME the function f is unfeasible
to compute. With this in mind, when we use a biased
likelihood for finding a posterior distribution, there is no
simple rule on how the error in the likelihood translates
across into the error of the posterior. For scenarios when
we have a biased likelihood and computing f in (1) is
unfeasible, one must get samples from the true posterior
to verify the accuracy of the posterior constructed by
the biased likelihood. Computing approximations of the
CME which have a uniform error over the parameter space
is computationally demanding. This motivates the pro-
posal for a preconditioning MCMC algorithm (pcMCMC)
Efendiev et al. (2006) 1 . In summary, the pcMCMC has
two proposal steps in series for the same proposed state.
The first proposal step uses the biased likelihood to accept
or reject the new state. If the state is accepted in the first
proposal step, then that state needs to be accepted in the
second proposal step; this then involves the computation
of a likelihood made up of unbiased CME approximations.
The state which is accepted by both proposals in series is
a true sample of the posterior distribution of the unbiased
likelihood function.

The principle idea being that if the biased likelihood
is close to the unbiased likelihood (locally), then the
acceptance rate of the second proposal should be higher
than the first. Since the CMEs are only being computed
in the second proposal, having a higher acceptance rate
would imply that we are minimizing the amount of CMEs
we need to compute to find true samples of the posterior
distribution. The acceptance rate of the second proposal
is also an indicator of how close the biased likelihood
is to the unbiased likelihood in some local region of the
parameter space. In the sections below, we introduce the
CME and the parameter inference problem. Then, we
give an overview of the preconditioning MCMC method
followed by some illustrative examples.

2. CHEMICAL MASTER EQUATION

The population of Ns ∈ N species undergoing Nr ∈ N reac-
tions is described by the following sum of inhomogeneous
Poisson processes,

Xσ(t) := X(0) +

Nr∑
r=1

Pr

(∫ t

0

αr(Xσ(s), σ)

)
ρr. (2)

The state space of Xσ(t) is denoted by Ω and is a subset of

NNs
0 . The variable σ is an element of our parameter space

Σ ⊂ RNr
+ . The function αr : Ω× Σ → [0,∞) describes the

propensity/intensity at which the rth reaction occurs. The
stoichiometric vector, ρr ∈ MNs×1, gives the change in
population induced by the rth reaction. Many biological
processes’ populations are described by (2). Historically,
Thomas Kurtz investigated the convergence and analysis
of (2) applied to the field of stochastic epidemiology, and
for this reason we refer to (2) as the Kurtz process Ethier
and Kurtz (2009).

1 also refereed to as delayed acceptance by the statistics community
Golightly et al. (2015)

To find the probability of observing Xσ(t) in a state x ∈ Ω
at a time point t, we need to substitute the Kurtz process
into the Chapman–Kolmogorov equation. This will lead to
the evolution of the probability over the state space being
governed by the Chemical Master Equation (CME),

∂Pσ(x; t)

∂t
=

Nr∑
r=1

αr(x− ρr, σ)Pσ(x− ρr; t)−
Nr∑
r=1

αr(x, σ)Pσ(x; t).

(3)

Verbosely, the change in probability of observing a state
x at time t is equal to the transition probability of
coming from an adjacent state into x, minus the transition
probability of leaving the state x . The CME can be solved
by formulating a linear initial value problem (IVP):

dpσ(t)

dt
= Aσpσ(t) i.c. p(0), (4)

where pσ(t) is a vector indexed by states in the state
space and Aσ is an infinitesimal generator with columns
summing to zero.

Broadly speaking, there are three major strategies for
numerically approximating the solution to (4): Domain
reduction, Galerkin methods and Tensor decomposition.
An example of a domain reduction method is aggregation,
where the idea is to aggregate states where the distribu-
tion has a shallow spatial gradient reducing the number
of equations to solve Munsky and Khammash (2006);
Sunkara and Hegland (2010). In Galerkin methods, the
distribution is projected on a finite dimensional Hilbert
space spanned by a chosen set of basis functions. This
changes the IVP of the probability distribution to an IVP
of the weights of the basis representation of the proba-
bility distribution Engblom (2009b); Jahnke and Udrescu
(2010). Like in the continuous Galerkin methods, if the
distribution has some inherent regularity, choosing the
right basis functions can give a significantly smaller IVP
to solve. Lastly, a Tensor decomposition method exploits
possible tensor structure of the infinitesimal generator Aσ

Kazeev et al. (2014). It has been shown that representing
the generators of particular systems in a tensor format can
partially overcome the curse of dimensionality. All meth-
ods exploit some inherent structure to achieve a signifi-
cant speed-up over constructing an empirical distribution
using trajectory based methods. Since our focus is not on
any particular solver, we use the notational convention of
writing a � when we are referring to an arbitrary approxi-
mation method of the CME. Similarly, we denote P �

σ (x; t)
as the corresponding solution to the approximate CME.

2.1 Random Variables and Likelihood

In this section we familiarize ourselves with the notational
convention that will be used through this paper describing
random variables and their likelihoods. We begin with
the notational convention for the parameters we wish to
infer. As in earlier sections, we denote the parameter to

be inferred as σ ∈ Σ. The set Σ is a closed subset of RNp

0 ,
where Np is the number of parameters we are to infer.

Let Ot
n (the data) be the nth random variable governed

by the stochastic process Xσ(t) with probability pσ(t).
For simplicity we assume data from only two time points,
that is, snapshot data. The term O0

0 denotes the initial
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