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∗∗ Pázmány Péter Catholic University Faculty of Information Technology and
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Abstract: Structural non-uniqueness of (bio)chemical reaction networks realizing a given kinetic dynam-
ics has been known for a long time, but it is often overlooked in practice. However, without appropri-
ate prior information, this phenomenon seriously hinders the successful identification of biochemical
models. Recently an algorithm with guaranteed polynomial time complexity between iterations has
been developed to compute all distinct reaction graph structures corresponding to a given dynamics.
This paper presents an improved version of this algorithm that is suitable to take the advantage of a
multiprocessor environment. The computed structures are collected in a task queue, and two server
processes coordinate the operation of the set of workers. The implementation is briefly described and the
performance of the approach is illustrated on computational examples taken from the literature.

Keywords: Chemical reaction networks, Optimization, Parallel computation, Polynomial models

1. INTRODUCTION

Kinetic systems and their realizing reaction networks are pop-
ular tools for modeling (bio)chemical reactions in chemical
and process engineering as well as in systems biology. This
is mainly due to the useful relations between the structure of
reaction networks and the properties of the differential equa-
tions describing the dynamics of the chemical reaction network.
It is known, however, that the correspondence between the
network structure and the dynamics is generally not one-to-
one. This means that there might exist many different network
structures (called realizations) translating to exactly the same
set of differential equations, even if the set of complexes is
fixed; see in Horn and Jackson (1972). It is also well-known
that the inference of biochemical reaction networks is a chal-
lenging task due to the frequent lack of structural or practi-
cal identifiability, see more in Chis et al. (2011). Naturally,
the possible structural non-uniqueness has a substantial impact
on the identifiability of kinetic systems (see e.g. Craciun and
Pantea (2008); Szederkényi et al. (2011)). Clearly, the different
realizations share the same dynamical properties: e.g. a sta-
bility condition obtained using a certain reaction graph proves
this property for the corresponding dynamical system itself. To
exploit such properties several optimization based algorithms
have been developed to determine realizations with preferred
properties (cf. Szederkényi (2010b,a)).

In this paper we use two main notions to relate the kinetic
dynamical system and the corresponding graph structures. The
reaction networks yielding exactly the same kinetic differen-
tial equations are called dynamically equivalent. Johnston and
Siegel (2011) introduced a positive linear diagonal transfor-
mation between the solutions (trajectories) of kinetic systems,

in this case kinetic systems are called linearly conjugate. It
is easy to see that dynamical equivalence is a special case of
linear conjugacy (cf. Craciun and Pantea (2008), Johnston et al.
(2012b)).

The computation of all structurally different graph structures is
generally a combinatorial problem, but there are special prop-
erties we can exploit to significantly reduce the search space.
First, there exist an upper and a lower bound for the possible
number of reactions in a reaction network realizing a kinetic
system. Szederkényi (2010a) reported a way to compute these
bounds which are the so-called dense and sparse realizations,
respectively. Second, it was proved that the dense realization
is a unique super-structure for a given dynamics and contains
all other possible realizations as proper sub-graphs (see e.g.
Johnston et al. (2012a)).

Beyond the possibility of an exhaustive search, knowing all
different realizations of a kinetic system enables us to study
such properties of the whole solution set that we are not yet
able to compute directly. An example for that is the enumer-
ation of all structures with a given deficiency. Deficiency is a
realization property but it may have immediate consequences
on the stability and uniqueness of equilibria for kinetic systems
as it was introduced in Feinberg (1987) and Feinberg (1988).

Tuza et al. (2013) reported the first solution to enumerate all
sparse realizations of a kinetic system. Recently, Ács et al.
(2016) developed the first provably correct algorithm with ad-
vantageous time complexity properties for computing all dis-
tinct reaction graph structures. Basically, this algorithm builds
a hierarchical tree structure which contains all realizations as
vertices of a tree. In the root we have the dense realization
(the upper bound) and below that in each horizontal level we
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Bionics, Práter u. 50/a, 1083 Budapest, Hungary, Email: {acs.bernadett,
szederkenyi}@itk.ppke.hu

Abstract: Structural non-uniqueness of (bio)chemical reaction networks realizing a given kinetic dynam-
ics has been known for a long time, but it is often overlooked in practice. However, without appropri-
ate prior information, this phenomenon seriously hinders the successful identification of biochemical
models. Recently an algorithm with guaranteed polynomial time complexity between iterations has
been developed to compute all distinct reaction graph structures corresponding to a given dynamics.
This paper presents an improved version of this algorithm that is suitable to take the advantage of a
multiprocessor environment. The computed structures are collected in a task queue, and two server
processes coordinate the operation of the set of workers. The implementation is briefly described and the
performance of the approach is illustrated on computational examples taken from the literature.

Keywords: Chemical reaction networks, Optimization, Parallel computation, Polynomial models

1. INTRODUCTION

Kinetic systems and their realizing reaction networks are pop-
ular tools for modeling (bio)chemical reactions in chemical
and process engineering as well as in systems biology. This
is mainly due to the useful relations between the structure of
reaction networks and the properties of the differential equa-
tions describing the dynamics of the chemical reaction network.
It is known, however, that the correspondence between the
network structure and the dynamics is generally not one-to-
one. This means that there might exist many different network
structures (called realizations) translating to exactly the same
set of differential equations, even if the set of complexes is
fixed; see in Horn and Jackson (1972). It is also well-known
that the inference of biochemical reaction networks is a chal-
lenging task due to the frequent lack of structural or practi-
cal identifiability, see more in Chis et al. (2011). Naturally,
the possible structural non-uniqueness has a substantial impact
on the identifiability of kinetic systems (see e.g. Craciun and
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can find all the realizations with a smaller number of reactions,
than one level above. Finally, at the bottom level we can find
all realizations with the minimum number of reactions (i.e. the
sparse realizations).

Based on the above, the aim of this paper is to present and
evaluate an improved, computationally more efficient imple-
mentation of the method presented in Ács et al. (2016), and to
illustrate the possible degree of structural non-uniqueness (and
consequently, that of non-identifiability) using examples taken
from the literature including models related to systems biology.

The paper is organized as follows: the next section briefly in-
troduces the necessary mathematical background for the imple-
mentation. The third section presents the improved algorithm
for computing all different graph structures and outlines the
proof of correctness. Section 4 details the implementation. The
computational results are presented in Section 5, while Sec-
tion 6 concludes the paper.

2. REPRESENTATIONS OF KINETIC SYSTEMS

We consider reaction networks as a general system class repre-
senting a wide class of nonlinear dynamical systems with non-
negative states (see e.g. in Chellaboina et al. (2009)). Through-
out the paper we follow the notations of Ács et al. (2016).

2.1 Algebraic characterization

A reaction network can be characterized by three sets:

(1) a set of species: S = {Xi | i ∈ {1, . . . , n}}
(2) a set of complexes: C = {Cj | j ∈ {1, . . . ,m}}, where

Cj =
n∑

i=1

αjiXi j ∈ {1, . . . ,m}

αji ∈ N0 j ∈ {1, . . . ,m}, i ∈ {1, . . . , n},
(3) and a set of reactions: R ⊆ {(Ci, Cj) | Ci, Cj ∈ C}

Each ordered pair (Ci, Cj) has a reaction rate coefficient
kij ∈ Rn

+ so that the corresponding reaction Ci → Cj

takes place if and only if kij > 0.

The structure of the reaction network can be characterized by
special matrices: the complex composition matrix Y ∈ Nn×m

0
describes the complexes as follows

[Y ]ij = αji i ∈ {1, . . . , n}, j ∈ {1, . . . ,m},
and the set of reactions is encoded by the Kirchhoff matrix
Ak ∈ Rm×m as

[Ak]ij =




kji if i �= j

−
m∑

l=1,l �=i

kil if i = j.

2.2 Dynamical description

If mass action kinetics is assumed and the concentrations of the
species depending on time are represented by the function x :
R → Rn

+, the time evolution of the model can be characterized
by a polynomial dynamical system:

ẋ = Y ·Ak · ψ(x) (1)
where ψ : Rn

+ → Rm
+ is a monomial-type vector-mapping

defined by

ψj(x) =

n∏
i=1

x
Yij

i , j = 1, . . . ,m. (2)

It is visible from (1) and (2) that the ODEs of a reaction network
can be characterized by the matrix pair Y and Ak.

Obviously, (1) can be written as a polynomial system of the
form

ẋ = M · ϕ(x) (3)
where x : R → Rn

+ is a function, M ∈ Rn×p a coefficient ma-
trix and ϕ : Rn

+ → Rp
+ a monomial function. The polynomial

system (3) is called a kinetic system if there exists a reaction
network governed by the same dynamics, i.e. the following
equation is fulfilled:

M · ϕ(x) = Y ·Ak · ψ(x), ∀x. (4)
In this case the reaction network represented by the matrices Y
and Ak is called a dynamically equivalent realization of the
kinetic system (3). We remark that the monomial functions ϕ
and ψ are generally not identical, since the set of complexes
determining the monomials is not fixed. However, the set of
complexes can be suitably complemented; we can assume with-
out the loss of generality that ϕ = ψ holds (see e.g. Ács et al.
(2016) for details).

The notion of dynamical equivalence can be generalized to the
case when the state vector is subject to a positive linear diagonal
state transformation, performed by a positive definite diagonal
matrix T ∈ Rn×n as follows: x̄ = T−1 · x. According to the
definition in Johnston et al. (2012a): a reaction network defined
by matrices Y and A′

k is called a linearly conjugate realization
of the kinetic system (3) if the following equations hold:

Y ·Ak = T−1 ·M (5)
A′

k = Ak · ΦT , (6)
where ΦT ∈ Rm×m is a positive definite diagonal matrix so
that [ΦT ]ii = ψi(T · 1) for i ∈ {1, . . . , n}, and 1 ∈ Rn is a
vector with all coordinates equal to 1.

2.3 Graph representation

The above notions give reaction networks a natural represen-
tation as weighted directed graphs G(V,E) called Feinberg-
Horn-Jackson graphs, or simply reaction graphs as follows:

• vertices: V (G) = C
• edges: E(G) = R
• edge weights: w(Ci, Cj) = kij

It can be seen that the reaction graph is encoded by the matrix
Ak, but since we want to determine only the structures of
the realizations from now on we consider reaction graphs as
unweighted directed graphs.

2.4 Distinguished reaction graph structures

The dense realization of a kinetic system—where the maxi-
mum number of reactions take place—has a special property
that guarantees the applicability of the algorithm presented in
this paper. Ács et al. (2015) proves that among linearly conju-
gate realizations fulfilling a finite set of linear constraints on the
parameters there is a realization determining a super-structure.
This super-structure is the unweighted reaction graph of the
dense realization which contains the reaction graph structures
of all possible linearly conjugate realizations of the model with
linear constraints as subgraphs.

The sparse realizations of a kinetic system are such realiza-
tions where the minimum number of reactions take place. In
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