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Abstract:

A simple yet generic approach is presented to extract the growth and breakage kinetics from
the temporal data of heterogeneous cell population. The moment form of the one-dimensional
population balance equation is directly solved by a MATLAB solver for linear systems to
extract the kinetics. The corresponding systems of linear equations are, however, highly
underdetermined and ill-conditioned. To address this, the problem is regularized by assuming
a suitable upper bound of the solution. The range between minimum and maximum possible
values of the solution is discretized into several sub-intervals. The system is then solved against
each sub-interval, whose values are used as lower and upper bounds in a suitable MATLAB
solver and a local solution is obtained in all these ranges. The final solution is then computed
by taking average of all solutions having residual norms less than a particular threshold. To
validate the method, the results of the inverse technique are compared and discussed against
two theoretical experiments.
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1. INTRODUCTION

Extraction of underlying kinetics from the experimental
data plays an important role in understanding the dynam-
ics of a particulate process and its correlation with the
process conditions and material properties. The complex
nature of particulate processes, however, makes this task
quite challenging, especially when the experimental data
is taken from living cells.

In a cellular system, cells grow in size in the presence
of favorable conditions such as adequate substrate. The
cells, though being cultured in the same environment, may
grow with different rates due to several reasons such as
intracellular content, thus giving rise to heterogeneity in
the population. Moreover, the cells start dividing upon
reaching a certain size and the new born daughter cells
usually also differ in sizes. This amplifies the heterogeneity
in the cell population.

Mathematically, a heterogeneous cell population is usually
modeled by means of population balance equations (PBESs)
(Ramkrishna (2000)). A typical one-dimensional PBE with
combined growth and breakage for cell size distribution
(CSD) of a cell population cultured in a batch reactor
with excess substrate is given by
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Here, n is the cell number density, v represents the
diameter/size of a cell, G represents the growth rate of
a cell, T is the breakage rate and P(v,u) is the partition
probability density function i.e., the probability that a
mother cell of size u will divide into daughter cells of sizes
v and u — v upon binary cell division.

In cellular systems, it is often assumed that cells neither
divide into daughter cells of sizes less than a certain size
nor grow beyond an upper threshold. Such a regularity
boundary condition is usually applied to solve (1) and is
given by

G('Umin)n(vmina t) =0= G(Umam)n(vmaxa t) (2)
Furthermore, the bivariate partition probability density
function P(v,u) satisfies the normalization condition,

/Ou P, u)dv = 1. 3)

The intrinsic physiological state (IPS) functions i.e., G,
I' and P govern the dynamics of the cell population.
However, the dynamics of heterogeneous cell population
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can only be comprehensively modeled by (1) provided
that the underlying kinetics are correctly reflected by the
corresponding IPS functions. This is, however, challenging
as cell growth is a complex process and depends on several
factors such as intracellular content, cell types, cell cycle,
process conditions etc. It is, therefore, often required to
extract these functions from the experimental data to
better understand the underlying kinetic laws.

The inverse problem is also effortful and poses many
experimental and computational challenges. Collins and
Richmond (1962) derived a mathematical expression for
the growth rate by assuming exponential balanced growth.
However, their model can not be used to extract the
growth rate from the experimental data unless the number
density distribution of the daughter cells as well as the
number density distribution of the mother cells are known.
Both distribution are quite challenging to be determined
by experiments. Similarly, Ramkrishna et al. (1968) also
derived an expression for the breakage rate which also
depends on the number density distribution of the mother
cells.

Recently, a method to extract kinetics from experimental
data of the cellular systems has been proposed by Spet-
sieris and Zygourakis (2012) by using the mathematical ex-
pressions of Collins and Richmond (1962) and Ramkrishna
et al. (1968). They developed a new sophisticated tech-
nique based on fluorescence microscopy and image process-
ing to determine subpopulations of mother and daughter
cells (Spetsieris et al. (2009)). They used a morphological
criterion based on the size of the characteristic constric-
tion to identify the subpopulation of mother cells. The
procedure, however, is quite complex and limited to rod-
shaped cells. Bouaswaig and Engell (2010) also proposed
an inverse technique to extract the growth kinetics from
the experimental data. Their work is, however, focused
on combined growth and coagulation processes. Moreover,
the approach is applicable to extract growth kinetics only
when the coagulation kinetics are known. Similarly, several
other inverse techniques are presented in the literature see
e.g., Mahoney et al. (2002); Peglow et al. (2006); Patruno
et al. (2008); Chakraborty et al. (2015), however, they
either may not directly be applied to cellular systems or
pose significant constraints to be applicable in cell PBEs.

This work proposes a technique to extract the kinet-
ics without any assumption regarding its structure from
temporal data of a heterogeneous cell population with
combined growth and breakage. The presented approach,
contrary to other approaches, does not require temporal
information regarding the density distributions of mother
and daughter cell subpopulations.

2. METHODOLOGY
2.1 Moment Form of the PBE

We first derive the zeroth and first moment forms of (1)
(Randolph and Larson (1988); Ramkrishna (2000)). For
this, we integrate both sides of (1) with respect to the size
and apply the boundary condition (2) to get

%+/0 T(v)n(v, t)dv
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Here, pp means zeroth moment i.e. the total number of
cells. By reversing the order of integration in (4), we get

%—5—/ I'(v)n(v,t)dv
dt 0
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Then by applying the normalization condition (3) in (5),
we get the zeroth moment equation for CSD,

% = /0Oo T'(v)n(v, t)dv. (6)

Similarly, for the first moment form, we multiply (1) with
the size v, integrate it with respect to v, and reverse the
order of integration to get

% T /OOO ag [G(v)n(v,t)] dv, (7)

where, 11 denotes the first moment i.e. the total volume.
We use integration by parts in (7) to have

% = /000 G(v)n(v,t)dv. (8)

Equations (6) and (8) are zeroth and first moment forms
of (1) and we intend to solve them directly to get G(v)
and T'(v). This means that we intend to approximate the
derivatives dro/at and dui/at from the computed/measured
n(v,t) and use an optimization method to find the optimal
approximations of G(v) and I'(v).

2.2 Discrete form of the forward problem

We assume that the cell size distribution over time i.e.
n(v,t) is available for k time points and [ size classes
of cells. This means that we have k number of cell size
distributions where each distribution comprises of [ size
classes. We use this information to compute dro/a: and
dui/ge numerically (Peglow et al. (2006)). Equations (6)
and (8), can be written element-wise in discrete form as

I
mio =Y mnijbj, (9)
j=1

!
mi1 = Znijgj' (10)
j=1

Here, n;; is the j* element of the i*"* CSD, m; ¢ and m; 1
are the i*" elements in numerical approximation of dpo/dt
and dn1/dt, respectively, and, b; and g; are the j'" elements
in breakage and growth rates, respectively. Equations (9)
and (10) can be written, respectively, in matrix form as

my — Nb, (11)
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