
IFAC-PapersOnLine 49-26 (2016) 357–363

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2017.03.001

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

The Regulation of Cell Motility Through
an Excitable Network

Sayak Bhattacharya, Pablo A. Iglesias ∗

∗ The Johns Hopkins University, Baltimore, MD 21218 USA (e-mails:
sbhatt11@jhu.edu and pi@jhu.edu).

Abstract: Recent years have demonstrated that the actin cytoskeleton and other signaling
elements in motile cells have many of the hallmarks of an excitable medium, including the
presence of propagating waves, a refractory period, as well as a threshold for activation. Here
we show how these behaviors can be explained by the presence of a signal transduction excitable
network that integrates a number of signals and coordinates actin polymerization. In this
model, spontaneous triggering of the excitable network accounts for the random migration of
unstimulated cells. Moreover, internal and external signals both chemical and mechanical bias
excitability spatially, thus providing a means by which cell motility is directed towards spatial
cues. We also show how the model predicts that the set point of the excitable system can be
altered by changing the threshold.
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1. INTRODUCTION

The study of excitable systems dates back to the work of
Alan Hodgkin and Andrew Huxley and their revolutionary
research on the mechanisms for excitation and inhibition in
the nerve cell membrane. Through a series of experiments
and mathematical models, they established that the dy-
namics of this system exhibited what is now referred to as
excitability — the presence of a single stable equilibrium
with two qualitatively different behaviors following pertur-
bation. When subjected to small-scale disturbances, the
system exhibits a monotonic return to its equilibrium. In
contrast, for sufficiently strong perturbations, the system
undergoes a non-monotonic large scale characteristic ex-
cursion before returning to its equilibrium. Together, the
system appears to respond in an “all-or-nothing” manner.
Moreover, when the system does respond, it possesses a
refractory period during which it cannot trigger further
responses. When the excitable system is distributed in
space, the system is said to form an excitable medium. In
this case, waves of excitation can propagate indefinitely.
In the years since, the study of excitable systems and
excitable media has been firmly established as a branch
of applied mathematics. Moreover, biologists have demon-
strated that excitable behavior exists in various physiologi-
cal and biological processes (Süel et al., 2006; Reichenbach
and Hudspeth, 2014).

1.1 Biological Background

Amoeboid cells move by periodically extending protru-
sions of the cell cortex formed by newly-polymerized actin
filaments (Bray, 2001). In addition to amoebae, a num-
ber of human cells employ amoeboid motility, including
neutrophils — white blood cells that form the first line of
defense in the immune response.

Over the last decade, an increasing number of studies
have suggested that cell migration in several amoeboid

cells is regulated by an excitable system whose activity
regulates actin polymerization (reviewed by Iglesias and
Devreotes, 2012; Shi and Iglesias, 2013). In particular,
actin polymerization was observed to propagate in waves
reminiscent of those seen in excitable media (Vicker, 2000;
Weiner et al., 2007). Since these first papers hinting at the
presence of an excitable network, it has been shown that
the signaling network that regulates the actin cytoskeleton
is itself excitable (Huang et al., 2013). Moreover, this
network shows a number of other hallmarks of excitable
systems, including the presence of a threshold, an all-
or-none response to suprathreshold perturbations, and a
refractory period (Huang et al., 2013; Nishikawa et al.,
2014).

1.2 Mathematical model

Throughout this paper we will use a simple two-state
activator-inhibitor model of an excitable system (Fig. 1A).
This class of models was first suggested by FitzHugh
(1961) and Nagumo et al. (1962) as mathematically
tractable models describing excitable behavior. The model
consists of two state variables. The first, the activator
(X), possesses a nonlinear positive feedback term (usually
cubic) which allows for self-regeneration. The second, the
inhibitor (Y ), has linear dynamics and enables a negative
feedback loop on the activator. The dynamics of the latter
is considerably slower, so that the positive feedback is fast
and the negative feedback is slow.

In particular, for our model of the excitable system regu-
lating motility in amoeboid cells, we use the following pair
of normalized equations:

Ẋ = −
(
1 + a1(Y − S)

)
X +

a2X
2

a23 +X2
+B (1)

Ẏ = ε (X − Y ) (2)

to describe the relative levels of both signals.
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and Hudspeth, 2014).

1.1 Biological Background

Amoeboid cells move by periodically extending protru-
sions of the cell cortex formed by newly-polymerized actin
filaments (Bray, 2001). In addition to amoebae, a num-
ber of human cells employ amoeboid motility, including
neutrophils — white blood cells that form the first line of
defense in the immune response.

Over the last decade, an increasing number of studies
have suggested that cell migration in several amoeboid

cells is regulated by an excitable system whose activity
regulates actin polymerization (reviewed by Iglesias and
Devreotes, 2012; Shi and Iglesias, 2013). In particular,
actin polymerization was observed to propagate in waves
reminiscent of those seen in excitable media (Vicker, 2000;
Weiner et al., 2007). Since these first papers hinting at the
presence of an excitable network, it has been shown that
the signaling network that regulates the actin cytoskeleton
is itself excitable (Huang et al., 2013). Moreover, this
network shows a number of other hallmarks of excitable
systems, including the presence of a threshold, an all-
or-none response to suprathreshold perturbations, and a
refractory period (Huang et al., 2013; Nishikawa et al.,
2014).

1.2 Mathematical model

Throughout this paper we will use a simple two-state
activator-inhibitor model of an excitable system (Fig. 1A).
This class of models was first suggested by FitzHugh
(1961) and Nagumo et al. (1962) as mathematically
tractable models describing excitable behavior. The model
consists of two state variables. The first, the activator
(X), possesses a nonlinear positive feedback term (usually
cubic) which allows for self-regeneration. The second, the
inhibitor (Y ), has linear dynamics and enables a negative
feedback loop on the activator. The dynamics of the latter
is considerably slower, so that the positive feedback is fast
and the negative feedback is slow.

In particular, for our model of the excitable system regu-
lating motility in amoeboid cells, we use the following pair
of normalized equations:
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The variable B represents a basal (constant) level of
activation while S represents an external variable input to
the system. This input can represent extrinsic stochastic
perturbations, the effect of various chemoattractants that
bias the excitability of the system spatially, or internal
polarity cues that also regulate cell behavior. The first of
these could give rise to spontaneous pseudopods that drive
random migration in unstimulated cells (Hecht et al., 2010;
Xiong et al., 2010). The second could represent a biasing
signal that guides cell motion towards chemoattractants;
see Xiong et al. (2010). Finally, the third can represent
a slow-time-scale positive feedback system that enables
the cell to remember the location of previous pseudopods.
This memory enables unstimulated cells to perform a more
efficient persistent random walk, enabling the cell to cover
a greater territory in search of nutrients (Cooper et al.,
2012; Shi et al., 2013; Wang et al., 2014; Skoge et al.,
2014). In stimulated cells, this memory acts to magnify
the effect of chemoattractant gradients, allowing cells to
move directionally in gradients as small as 1–2% (Shi et al.,
2013). It has to be emphasized that this is a simplified
model for a system which consists of more than a hundred
genes (Swaney et al., 2010). Nevertheless, simulations of
cell movement using this system (or variants) have been
shown to recreate many aspects of cell movement quite
accurately; see, for example, Neilson et al. (2011), Hecht
et al. (2011) and Shi et al. (2013).

1.3 Phase-plane analysis

Because the model of the system is of second order, there
are several straightforward analyses that can be carried
out.

Existence of equilibria. From the Y -nullcline, we set
Y = X into the equation for the X-nullcline. This gives
us the equivalent equation

(
1 + a1(X − S)

)
X =

a2X
2

a23 +X2
+B

or

a1X
4 + (1− a1S)X

3 +
(
a1a

2
3 − a2 −B

)
X2

+ a23(1− a1S)X − a23B = 0

for the equilibrium value X� of the activator. With no
input (S=0) and a sufficiently low basal level of activation
such that a1a

2
3 > a2 + B, then Descartes’s rule of signs

states that there is only one positive real root. However,
upon the application of sufficiently strong stimulus (S) so
that a1S > 1, three positive real roots are possible. This
can occur as S increases and suggests the possibility of
bifurcations. However, note that for small or very large
values of S only one solution exists; in the first case, X�

is small; in the latter X� is large.

Local stability analysis. The Jacobian for the system has
the form:

J =


−

(
1 + a1(X

� − S)
)
+

2a2a
2
3X

�

(a23 +X�2)2
−a1X

�

ε −ε


 .

The only term that can change sign is the (1,1) element.
The second term:

2a3a
2
4X

�

(a24 +X�2)2

is a biphasic function of X� starting (when X� = 0) and
ending (asX� → ∞) at zero. In these two extremes, and in
the absence of an external stimulus, the trace is negative,
the determinant positive, and hence the equilibrium is
stable. For intermediate values of X�, this element can
be zero or positive and the system can undergo a Hopf
bifurcation.

Phase-plane analysis. The properties of this system
can be best understood using phase-plane analysis. In
particular, note that for zero input, the two nullclines are

Y = (a2 +B)
X2 + a23

B
a2+B

X(a23 +X2)
− 1

a1

and Y = X.

The first term in theX-nullcline has three effective regimes
as a function of X. For sufficiently small X, the curve is
proportional to 1/X. Since

a23
B

a2 +B
< a23,

the nuclline will start to increase when X2 ≥ a23B/(a2+B)
before decreasing once again, after X2 ≥ a23. This gives
the nullcline a “reverse N” shape reminiscent of a cubic
curve. The second term of the X-nullcline simply moves
the curve down. Similarly, a constant input (S > 0) moves
the X-nullcline vertically.

The minimum and maximum of the cubic nullcline are
crucial to the existence of excitability. If the Y -nullcline
intersects the X-nullcline to the left of the minimum, as
in Fig. 1B, then the equilibrium is stable. In this case, a
small increase in S moves the eqilibrium from point a to
b. As the system is no longer at equilibrium, the state
changes, however the trajectory is small as the system
settles to its new equilibrium. In contrast, a sufficiently
large increase in S, from a to c (Fig. 1C) causes the state
to undergo a large excursion in phase space as the activator
increases greatly, then decreases below its new steady-
state value, before settling to this equilibrium. The nature
of the excursion, such as duration and amplitude, are
determined by the maximum of the cubic nullcline, which
is determined by the strength of the positive feedback loop.
What differentiates these two classes of trajectories and
which inputs constitute a sufficient trigger depends on the
threshold for activation, and this is discussed in more detail
below.

For the situation in Fig. 1D, when the intersection is
shifted to the right of the minimum from a to d, either
a saddle-node, or Hopf bifurcation can occur, depending
on the specific parameter set (Xiong et al., 2010; Iglesias,
2013). In both cases, the equilibrium becomes unstable,
implying that any slight disturbance will cause a large
excursion in phase space. In the former case, multiple
equilibria appear, and the system can become biphasic. In
the latter, the trajectory is oscillatory, as shown in Fig. 1D.

These changes illustrate how cell migration can be driven
by an excitable system (Iglesias and Devreotes, 2012). In
its basal state, the system is at equilibrium, but subject
to random fluctuations in S. Sufficiently large values of
S trigger the excitable system, leading to the formation
of pseudopods. Additionally, the application of external
stimuli increases S and triggers further activity. The
presence of a chemoattractant gradient leads to spatially
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