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Abstract: Dynamic data reconciliation and gross error detection ask for an accurate physical
model, e.g. a state-space model, based on which measurement noise and gross errors can be
quantitatively assessed. The model can be established based on either first-principle knowledge
or process operation data. This work considers a case with limited first-principle knowledge and
imperfect operation data, which is inspired by a real industrial process. We seek to develop
a dynamic model using operation data contaminated by not only measurement noise but also
gross errors, which conforms to known static constraints such as mass balance. Probabilistic
slow feature analysis (PSFA) is adopted to describe dynamics of both nominal variations and
gross errors, and model parameters are estimated by means of the expectation maximization
(EM) algorithm. Data from an industrial slurry preparation process are used to demonstrate

the usefulness of the proposed method.
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1. INTRODUCTION

In industrial practice, process instrumentations are prone
to measurement imprecisions, which may add significant
difficulties to real-time control, monitoring and optimiza-
tions. Such imprecisions are manifested in two principal
forms: random measurement noises and systematic gross
errors. To obtain clean data from noisy measurements,
data reconciliation techniques have been well established
and implemented in the past 30 years (Mah (1990); Crowe
(1996)), which are typically based on the statistical prop-
erties of random noises. With a statistical description,
gross errors can be effectively detected via various statis-
tical tests and then get compensated (Narasimhan et al.
(1999)). Because of their close kinship, simultaneous data
reconciliation and gross error detection have further been
taken into account (Tjoa et al. (1991); Soderstrom et al.
(2001)), to furnish trustworthy information for control and
optimization purposes.

In general, data reconciliation and gross error detection
approaches can be categorized into two groups, namely the
static and dynamic strategies. The principal component
analysis (PCA)-based method proposed by Tong et al.
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(1995) is among the earliest attempts that target on
the high correlations between process variables. To deal
with non-isotropic measurement noise, Gonzalez et al.
(2011) proposed to use factor analysis (FA) model and
further estimate process variations, measurement noises
and bias terms using the expectation maximization (EM)
algorithm. Recently, Yuan et al. (2015) has adopted the
hierarchical Bayesian framework for simultaneous gross
error detection and data reconciliation in both linear and
nonlinear cases.

Different from their static counterparts, dynamic data
reconciliation and gross error detection approaches usually
resort to a state-space model evolving over time (Albu-
querque et al. (1996); Bai et al. (2006); Gonzalez et al.
(2012)). It entails a sufficiently accurate physical model,
which shall come from either first-principle knowledge or
data-driven modeling. Unfortunately, it is common that
only some steady mass balance or energy balance is avail-
able, and archived data are inevitably contaminated by
gross errors. Hence in both cases, it is a great challenge to
establish a physical dynamic model.

Therefore, this article is towards the development of a
linear state-space model that covers nominal variations,
measurement noises and gross errors using imperfect data,
with steady mass balance or energy balance at hand only.
It originates from an industrial slurry preparation sys-
tem within the oil industry. The novelty of the proposed
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method lies in that, it not only describes the dynamics of
nominal variations that conform to static constraints, but
also models gross errors as time-varying, which differs from
traditional dynamic alternatives that take gross errors as
constants. The proposed model incorporates both a limited
prior knowledge (steady contraints) and information from
data that are subject to gross errors, thereby yielding a
gray-box mechanism. Probabilistic slow feature analysis
(PSFA), an emerging latent variable model proposed by
Turner et al. (2007), is utilized to address the evolving dy-
namics of both process variations and gross errors. Model
parameters are then adjusted using the celebrated EM
algorithm. In order to enhance the optimization of EM
algorithm, a sophisiticated approach is proposed to deter-
mine the initial parameters on the basis of deterministic
SFA.

The rest of this work is devided into the following sections.
Section 2 reviews basics of the PSFA model in brief. Sec-
tion 3 proposes a state-space model that simultaneously
describes the dynamics of nominal variations and gross
errors, as well as the measurement noise. Section 4 gives
the EM-algorithm for parameter estimation, along with an
effective initialization strategy to improve the optimization
performance. In Section 5, empirical results on data from
an oil sand slurry preparation system are provided. Finally,
conclusions are provided.

2. PROBABILISTIC SLOW FEATURE ANALYSIS

In this section, we first review the PSFA model presented
in Shang et al. (2015a), a simplified state-space model
for unsupervised feature learning from time series data.
Assume that observations are denoted as x(t) € R™ and
latent variables are denoted as s(t) € R?, and most in-
formation of x(¢) can be explained by s(t). Different from
traditional latent variable models such as principal com-
ponent analysis (PCA), s(t) is assumed to be temporally
correlated in a Markov fashion, which is described as:

s(t) =Fs(t—1) +e(¥) 1)
x(t) = Hs(t) + €(t)
where e(t) ~ N(0,T), €(t) ~ N(0,X). Matrices F and T'
are governed by a group of transition parameters {\;, 1 <
Jj<aj:
F:diag{Ala"'a/\q}a (2)
I =diag{1-A%,--- ,1-A2}.
Every transition parameter must satisfy 0 < A; < 1. It
can be readily verified that each slow feature s;(t) is an
independent first-order auto-regressive (AR(1)) process,
of which the stationary mean and variance are specified
as, respectively, zero and unity. ¥ = diag{o?,---,02}
denotes the covariance matrix of measurement noise that
is assumed to be diagonal but non-isotropic.

PSFA can be perceived as a special form of linear dynam-
ical system (LDS) in which independence assumptions are
made over latent states. Its physical implications are clear
that observations x(¢) are intrinsically driven by a series
of independent AR(1) processes with different dynamic
behaviors. Another attractive feature is that for parameter
learning of PSFA using EM algorithm, their initial values
can be desirably set by deterministic SFA, as to be clarified
in the next section.

3. DYNAMIC MODEL WITH EVOLVING GROSS
ERRORS AND KNOWN CONSTRAINTS

In the presence of measurement noise and gross errors,
we assume that observations x(¢) can be, in general,
partitioned into two parts

x(t) = x(t) + b(), (3)
where x(t) denotes the nominal variations of a process
that conform to a known constraint Ax = 0, and b(¢)
incorporates both measurement noise and gross errors
that are at variance with the constraint. In the preceding
section, PSFA is introduced to depict nominal variations
of process data without any specific postulations. Next,
along the same line with PSFA, we develop dynamic
formulations to describe how %(¢) and b(t) evolve over
time.

3.1 Dynamic Model for Mass/FEnergy Balances

For nominal variations that agree with the constraint, they
can be described in a dynamic sense as follows:
v(t) =F,v(t — 1)+ ey (t) )
x(t) = Hyv(t) + %o
where H,v(t) denotes the zero-mean nominal variations of
process driven by p independent slow features v(t) € RP,
and x( represents the static working point of x. To satisfy
the constraint Ax(t) = 0, it is assumed a priori that
AH, = 0 and Axy = 0 such that both dynamic variations
and static point meet the constraint. Dynamic parameters
are specified as

F, = diag{\, -+, A},
e,(t) ~N(0,T.), (5)
T, =diag{1—A},---,1- A2},

in a similar fashion as PSFA.

8.2 Dynamic Model for Gross Errors and Measurement
Noise

Gross errors and measurement noises are absorbed into
b(t), and its dynamics can then be formulated as

w(t) = Fuw(t — 1) + ey(t), ©)
b(t) = Hyw(t) + bo + €(t),

where H,,w(t) stands for the zero-mean nominal vari-
ations of gross errors that transgress the constraint,
and w(t) € R? denotes underlying slow features. by
is the steady operation point of gross errors, consid-
ered as a random variable with Gaussian uncertainties
by ~ N(b,X). €(t) ~ N(0,X) stands for the measure-
ment noise term. Dynamic parameters are specified as
F,= dia‘g{/\p-‘rla to a)‘P'HI} and ew(t) NN(O,Fw), ry, =
diag{l—)\f,ﬂ,--- 71—)\12)+q .

3.8 The Entire Model

If we further combine models of nominal variations and
bias together based on the preceding assumptions, obser-
vations x(¢) can be finally decomposed as five parts in a
dynamic sense:

x(t) = Hyv(t) + xo + How(t) + by + e(t).  (7)
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