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Abstract: The computation of an optimal steady-state operating point in an experimental
annealing furnace is considered. In particular, the optimum spatial distribution of electric
power supplied to IR-lamps is computed to ensure the temperature uniformity in the specimen
fillet. A control-oriented reduced-order model of the steady-state 2D temperature distribution is
derived and compared with the full-order model. Saturation functions are used to consider input
constraints in a tailored optimization problem. The evaluation of the optimal control input is
carried out with the full-order model. Uniqueness of the solution of the optimization problem is
investigated numerically. The temperature field in the specimen fillet deviates less than 0.4 %
of the setpoint value if sufficient heating power is available.
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1. INTRODUCTION

Temperature uniformity control has a long tradition in
manufacturing semiconductor devices, see, e.g., (Logerais
et al., 2015; Ebert et al., 2004). In these applications,
motivated by the manufacturing process of rotating cir-
cular wafers, the authors focus mostly on the temperature
distribution along the radial coordinate by assuming uni-
form profiles along the tangential direction. Temperature
uniformity along one spatial variable in vertical furnaces
is also addressed by Shen et al. (2016).

While in continuous-type annealing furnaces (cf. Niederer
et al., 2014) the temperature along the length of an
axially moving strip is of main interest, in batch heating
of flat specimens their 2-dimensional (2D) temperature
profiles are in the focus of attention. This is especially true
when dealing with a laboratory furnace as considered by
Jadachowski et al. (2016) heated by electrically powered
infrared (IR) radiators, where spatial non-uniformities of
the specimen temperature may be caused by the usually
fixed geometric arrangement of the IR-radiators and the
specimen. The furnace under consideration is used by
voestalpine Stahl GmbH to study and optimize process
parameters of continuous annealing.

The heating chamber of the considered experimental an-
nealing furnace is outlined in Fig. 1. It consists of a
water-cooled housing with a steel specimen inside and two
arrays of IR-lamps (V) horizontal and N, vertical IR-
lamps) mounted on gold-coated water-cooled reflectors.
The lamps are separated by the quartz glass windows from
the annealing chamber filled with an inert atmosphere.

Here, an inert gas streams into the heating zone through
a gap between the upper specimen holder and the housing
and leaves the IR-zone via the bottom gap. The quartz
glass windows are fixed to the housing by means of gold-
coated frames. When supplying electric power to the IR-
lamps, the specimen of length Ly and width Wj is heated
by means of thermal radiation. In particular, the temper-
ature distribution in the specimen along the direction =
is mainly influenced by the horizontal IR-lamps and the
temperature distribution along the direction y is mainly
determined by the vertical IR-lamps. The assumption of
a homogeneous strip temperature along the direction z
(direction of the specimen thickness Bs) is justified by the
small Biot-number Bi <« 1 (cf. Incropera et al., 2007).
The temperature evolution in the specimen fillet Qf :=
{(x,y) € R? | 0.25Ls < x < 0.75Lg, 0.2W, <y < 0.8W,},
with the area Ay = LW, and the dimensions Ly = 0.5L,
and Wy = 0.6Wj, is subsequently of particular interest.

In this paper, an optimal steady-state operating point
for a spatially 2D distributed-parameter model of the
temperature evolution in a steel strip is determined. The
goal is to optimize a steady-state distribution of electric
power supplied to the IR-lamps to ensure the temperature
uniformity in the specimen fillet during annealing. For
this, an optimal control problem is formulated to minimize
the mean temperature error between the specimen fillet
and a desired reference temperature T...;. In particular,
a direct optimization (first discretize, then optimize) is
applied based on a spatial discretization of the elliptic
quasilinear partial differential equation (PDE) governing
the stationary temperature profiles in the specimen. The
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Fig. 1. Cross-sectional views of the experimental annealing furnace: (a) view from the side, (b) view from the top.

uniqueness of the solution of the considered optimization
problem as well as the effect of the determined power
distribution on the resulting temperature uniformity are
investigated in numerical simulation studies.

The paper is structured as follows: In Section 2, the
full-order finite difference model is summarized and a
reduced finite element model is derived. In Section 3,
an optimal steady-state control problem is formulated
and saturation functions are used to incorporate input
constraints. The latter is solved on the basis of the reduced
model. Simulation results evaluated with the full-order
model are presented and analyzed in Section 4. Final
remarks given in Section 5 conclude the paper.

Notation: Arguments of functions are omitted whenever
they are clear from the context. Moreover, VT (z,y,t) =
[0.T(x,y,t) 0,1 (z,y,t)] denotes the temperature gradient
with respect to spatial coordinates x and y with corre-
sponding partial derivatives 0T (z,y,t) and 0,7 (z,y,1),
respectively. Temperatures are assembled in the vector
Ty = [T(,),J . The vector of their fourth powers is written

in the form T‘(l_) = [T(4_) J Finally,
of dimension n with all entries equal to 1 and I is the

identity matrix.

1,, refers to the vector

2. CONTROL-ORIENTED MODEL FOR SPECIMEN
TEMPERATURE

The steady-state distribution of the specimen temperature
along the spatial coordinates (z,y) € Q with Q :=
{(z,y) e R2 |0 < 2 < Lg, 0 < y < W} is modeled
by the non-local 2D quasilinear elliptic PDE

div(MT)VT(2,1)) + 4r(z,y, T, u) + s(2,5,T) =0 (1)

with the 2D temperature profile T'(z, y) and the temperature-

dependent thermal conductivity A(T"). The control input
ul = [ug E] define the net radiative power emitted by
the horizontal and vertical lamps with u;, = [up i],_;

=1,...,Np
and wy, = [uy;(t)];, - In fact, ue; = pg;/(ndidl)
is the net heat flux at the surface of the lamp ¢ with
* € {h,v}, which has the effective diameter d, and length

lx. The electric power supplied to the lamp ¢ is denoted by

Py;; and is assumed to be entirely converted into thermal
radiative power. The source term ¢,(z,y,T,u) depends
explicitly on the input u and describes the thermal in-
teraction between the specimen and surrounding surfaces.
The heat source ¢s(x,y, T) arises from to forced convection
and heat conduction into the specimen holders.

The PDE (1) is completed by Robin type boundary
conditions defined on (z,y) € ' :=cl(Q) \ Q, i.e.,

NT)0,T(z,y) = oy (T(z,y) — T,"), z=0 (2a)
A1), T(2,9) = —an (T(@,y) = T,7), @=Ly (2b)
AT)O,T (2, y) = ig (T(2,y) = Tiy(2)),  y= 0 (2¢)
AT)O, T (2,y) = —aig (T(x,y) = Tig(x)), y =W, (2d)

with the convective heat transfer coeflicients aj, oug.

The boundary disturbances T}I , T € {up,lo} and T;4(x)
describe the temperature of the upper and lower specimen
holder and the mean inert gas temperature along the
specimen length, respectively.

2.1 Finite Difference Model of the Heat Conduction PDE

In view of the non-trivial character of (1) and (2), an
early lumping approach is pursued. The domain €2 is
spatially discretized into Ny = N,N, equal rectangular
elements k = 1,..., Ny with side lengths dz = L;/N, and
dy = W,/N,. Based on the bijective mapping

(i,5) = k=1i+ Na(j — 1) (3)
withi =1,...,N; and j = 1,..., Ny, (1) and (2) are
approximated using central difference quotients (Stoer
and Bulirsch, 2002). This yields the finite difference (FD)
approximation of (1) and (2) in the form
with the state vector T = [Tj]k=1,....n, and Ty = T'(z;, ;).
In (4), D(T) describes heat diffusion in the specimen,
4,(T,u) contains the net radiative heat fluxes between
element surfaces and surrounding surfaces, convective and
conductive heat sources are addressed by q,(T), and b(T)
refers to the boundary conditions (2). Spatial discretiza-
tions q,(T,u) and q,(T) of the terms ¢,(z,y,T,u) and
¢s(z,y,T) can be found in (Jadachowski et al., 2016).
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