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Abstract: This paper presents a slack variable generation method utilizing QR decomposition for an
adaptive nonlinear controller of affine underactuated systems. Slack variables are adopted to overcome
nonsquare properties of underactuated systems. QR decomposition has an advantage of fast and accurate
calculation to compute least square solution of underdetermined systems. In this paper, the slack variable
generation using the QR decomposition is proposed to guarantee the stability of the closed-loop system
with an adaptive nonlinear controller. Numerical simulations are performed to verify the performance
of the adaptive nonlinear controller with the proposed slack variable generation method for a quadrotor
unmanned aerial vehicle and an unmanned helicopter.
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1. INTRODUCTION

There exist various underactuated systems including under-
water robots, UAVs(Unmanned Aerial Vehicles), and mobile
robots, etc. Underactuated systems have fewer control inputs
than the degree of freedom, and therefore, control of the under-
actuated systems is much more complex than control of fully-
actuated systems. For this reason, various nonlinear control
methods for the underactuated systems have been developed in
the past decades.

Feedback linearization and sliding mode control methods have
been widely used to control nonlinear systems. Pathak ef al.
analyzed wheeled inverted pendulum systems to utilize a partial
feedback linearization method (Pathak et al. [2005]). Benal-
legue er al. applied a feedback linearization-based controller
using high-order sliding mode observer to a quadrotor UAV
(Benallegue et al. [2008]). Xu and Ozguner proposed a sliding
mode control design approach to stabilize a class of underactu-
ated systems and apply to a translation oscillator with rotational
actuator system and a quadrotor UAV (Xu and Ozguner [2008]).
A sliding mode control scheme using linear matrix inequality
approach has been also used to design controllers for contin-
uous time Markovian jump singular systems with unmeasured
states (Wu et al. [2010]) and for differential linear repetitive
processes with unmeasurable components of process states and
pass profile (Wu et al. [2011]). However, the feedback lineariza-
tion method only guarantees the local stability of the system
which does not consider the disturbance or modeling error. And
it is known that the sliding mode control method has some
disadvantages such as large control inputs and chattering.

An adaptive nonlinear control scheme has been studied to
overcome the demerits of the feedback linearization and the
sliding mode control methods. Padhi et al. proposed a neural
networks-based model-following adaptive control technique for
a class of nonaffine nonsquare nonlinear systems (Padhi et al.
[2007]). Ahn et al. proposed an adaptive sliding mode control
method for nonaffine and nonsquare nonlinear systems (Ahn
etal. [2007]). An adaptive sliding mode controller was designed
for a quadrotor UAV system with the external disturbance (Lee
et al. [2009]). And, an adaptive sliding mode controller was
integrated to an adaptive image-based visual servoing for a
quadrotor UAV system (Lee et al. [2012]). Hong and Kim
designed an integrated guidance and controller using adaptive
sliding mode control technique for a rotary UAV system (Hong
and Kim [2012]). On the other hand, slack variable vectors
were used to deal with the properties of nonsquare nonlinear
systems. By introducing the slack variables, various adaptive
nonlinear control schemes can be used to design a controller
for the nonsquare nonlinear systems. However, a systematic
slack variable generation method has not been studied much,
and only carefully chosen constant slack variable vectors were
used to design the adaptive nonlinear controllers (Padhi et al.
[2007], Ahn et al. [2007], Lee et al. [2009], Lee et al. [2012],
Hong and Kim [2012]).

In this study, a systematic slack variable generation method
using QR decomposition is proposed to deal with underactu-
ated nonlinear systems. The proposed slack variable generation
method is utilized for an adaptive nonlinear control technique
of affine underactuated systems, because the analysis on the
affine systems is relatively easier than that of nonaffine systems.
QR decomposition is widely used to calculate a solution of a
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least square problem because QR decomposition is known as
an efficient and accurate algorithm. QR decomposition can be
also utilized to treat the underdetermined systems.

This paper is organized as follows. In Section II, an adaptive
sliding mode controller for affine and underactuated nonlinear
systems is presented. In Section III, the slack variable genera-
tion method using QR decomposition is proposed. In Section
IV, an adaptive sliding mode controller and the proposed slack
variable generation method is applied to design controllers for a
quadrotor UAV system and a unmanned helicopter system. Nu-
merical simulations are performed to verify the performance of
the adaptive nonlinear control scheme with the proposed slack
variable generation method in Section V. Finally, conclusions
are made in Section VI.

2. ADAPTIVE SLIDING MODE CONTROLLER FOR
AFFINE UNDERACTUATED SYSTEMS

Consider a control affine underactuated nonlinear system,

x=f(x)+gx)utfr(x) ey
where x € R” is a state vector, u € R (m < n) is a control
vector of the system, and f, (x) € R” is the unknown vector
such as the external disturbance or modeling error. Let us
assume that the order of system is known, and f (x) and g (x)

are continuously differentiable. It is also assumed that g (x) has
full rank.

The augmented nonlinear system using slack variables can be
written as

x=f(x)+Gx)U—-v+f(x) )
where
G(x) =[g(x) & 3)
U=[u" u] r 4)
=54 )

In the above augmented nonlinear system, g is a slack variable
matrix to make G (x) invertible, u; € R"™ is a slack variable
input vector, and v is the unknown vector which needs to be
estimated. Let us consider the assumption that v and f;(x)
change very slow, respectively.
Consider the following sliding surface,

S=e=x—xy (6)
where e is the error state vector with respect to the desired state
vector, X .

Let us define the Lyapunov candidate function as follows
1 1 1. -
L= ESTS+E\7TF\7+§f, x)" QF, (x) 7)

where V and £, (x) are the error vectors with respect to the true
values of v and f, (x), respectively, i.e. v =v — ¥ and f, (x) =
fr(x) = fr(x), and T and Q are positive definite diagonal
weighting matrices, respectively. Note that ¥ and f, (x) are the
estimated values of v and f; (x), respectively.

Let us consider the following control input.
U=G"(x)[~f(x)+ ¥~/ (x) + %4 — CS] (8)
with the adaptation rules
v=-I"'S )
fx)=07's (10)

where C is a positive definite diagonal gain matrix. Note that

the ¥ and f, (x) have almost same values of —V and — f, (x),
respectively, since it is assumed that v and f, (x) change very
slowly. Also, note that the following second order equation can
be obtained (Kim et al. [2012]).

S+cS+(r'+a')s=0 (11)
Therefore, it can be stated that the diagonal elements of
(F’l + Q’l) and C have the similar physical meaning on the
natural frequency and the damping ratio, respectively.

o =diag ("' +Q7")
28iw; = diag (C)

12)
13)

The following augmented control input of (8) with adaptation
laws (9) and (10) makes the error states of a control affine
underactuated nonlinear system converge to zero, as time in-
creases (Kim et al. [2012]).

Note that the actual control input vector is extracted as

u=U(1:m) (14)
The above actual control input is used for the affine underactu-
ated nonlinear system (1).

3. SLACK VARIABLES GENERATION METHOD USING
QR DECOMPOSITION

It is very important to choose proper slack variables to make
G (x) nonsingular. The conventional approach to select the
slack variable is not systematic. RREF(Reduced Row Echelon
Form) was utilized to generate slack variables, but the generated
slack variables were constant and composed of 0 and 1 due
to the properties of RREF (Kim et al. [2012]). In this study,
the method generating a suitable slack variable matrix using
QR decomposition is proposed. QR decomposition is one of
the most widely used methods to calculate a solution of a
least square problem. Among various matrix decomposition
techniques, QR decomposition is known as a fast and accurate
method to compute the least square solutions, and therefore can
deal with underdetermined systems, i.e. underactuated systems
(Junkins and Kim [1993]).

Theorem 1. Consider a (n x m) matrix A that has a full rank m,
ie.,

AR, (n>m), p(A)=m (15)
where p(+) denotes the rank of a matrix. Using QR decomposi-
tion, A can be rewritten uniquely as

A=QR (16)
where Q € R"*" is an orthonormal matrix, and R € R"*™ is an
upper triangular matrix with positive elements.

The matrix A can be rewritten due to its nonsquare properties
as follows

A=[Q)[Q2] {lﬂ (17)

where Q; € R, Q, € R"™<("=m) and Ry € R,

Then, [A|Q2] is a nonsingular square matrix, i.e. p ([A|Qz]) =
n.

Proof. The proof of Theorem 1 is omitted, since it can be
proved easily using the fundamentals of the QR decomposition.
(See the proof in Appendix.)
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