
IFAC-PapersOnLine 49-17 (2016) 248–253

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2016.09.043

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Flight Control Software Failure Mitigation:
Design Optimization for

Software-implemented Fault Detectors

Andrey Morozov ∗ Klaus Janschek ∗

∗ Technische Universität Dresden, Institute of Automation,
01062 Dresden, Germany (e-mail: {andrey.morozov,

klaus.janschek}@tu-dresden.de)

Abstract: Failures of avionic and aerospace control hardware, caused by negative environmental
impacts like increasing heat or cosmic radiation, can lead to silent data corruption and unde-
tected incorrect system outputs. Traditionally, redundant and specifically protected hardware is
used, which is expensive and available only on restricted markets. The application of software-
implemented fault detectors like SWIFT, SWIFT ECF, or Software Encoded Processing is a
promising alternative solution that offers the opportunity to use cost effective, but less reliable
hardware. However, this entails generation of extra source code, resulting in a considerable
computational overhead and, as a consequence, leads to performance degradations. This article
introduces an approach that aims minimizing the negative performance impact while maintain-
ing the required system reliability level. It is shown that selective and balanced application
of the software-implemented fault detectors solely to the most critical parts of the control
software is an efficient system design solution. The presented approach uses a combination of
two methods for reliability and performance analysis. Both methods are used for the quantitative
exploration of different strategies of selective protection and allow finding a balance between
system performance and reliability. The article demonstrates the application of the introduced
approach using embedded flight control software of an UAV.

Keywords: Flight control software, UAV, error propagation, reliability, performance,
optimization, Markov models, model-based design.

1. INTRODUCTION

1.1 Motivation

Usually, software in safety-critical systems, assumes a fault
free execution through the executing hardware. However,
decreasing feature sizes of integrated circuits (e.g. CPU
and memory) and increasing system complexity lead to
less reliable hardware (Borkar (2005)). Hardware failures
can cause hidden data corruption and may result in unde-
tected incorrect system outputs (silent data corruption).
In avionic and aerospace applications, an undetected erro-
neous output can cause hazardous issues. A failure of the
Russian space mission ”Phobos Grunt” in February 2012
is an example, see Oberg (2012). According to the official
report (Roskosmos (2012)), this failure has happened be-
cause of an SRAM fault, caused by ”a local influence of
heavy charged particles” (cosmic radiation).

The example in Fig. 1 illustrates a hardware failure in
focus. A negative environmental impact corrupts a part of
memory of computing hardware. This results in a single
or several bit flips that change the application state, e.g.
the value of a critical variable as it shown in Fig. 1.
Later, during an execution of the software function f2,
this erroneous value is read and propagated further to
the system output. An error in the output is considered
as a system failure that may lead to various unintended

Erroneous
critical output

HW

memory

SW

function f1

SW

funciton f2
Input Output

HW failure
e.g. a bit-flip

S
y
s
te

m
 b

o
u
n
d
a
ry

Increasing

heat

Lowering

voltage

Cosmic

radiation

Fig. 1. An example of a hardware failure: A negative
environmental impact corrupts a part of system’s
memory, this changes the value of a stored variable
and cause a data error that propagates to a critical
system output.

consequences. Similar hardware failures leading to data
corruption can happen not only in memory, but in a CPU,
a bus or other computing hardware parts.

This article is organized as follows. The remaining part
of this section presents the relevant state of the art and
the basic concept of the introduced method. Section 2
demonstrates a case-study UAV platform. Section 3 intro-
duces the design optimization method itself. Concluding,
Section 4 describes the method evaluation and results.

20th IFAC Symposium on Automatic Control in Aerospace
August 21-25, 2016. Sherbrooke, Quebec, Canada

Copyright © 2016 IFAC 248

Flight Control Software Failure Mitigation:
Design Optimization for

Software-implemented Fault Detectors

Andrey Morozov ∗ Klaus Janschek ∗

∗ Technische Universität Dresden, Institute of Automation,
01062 Dresden, Germany (e-mail: {andrey.morozov,

klaus.janschek}@tu-dresden.de)

Abstract: Failures of avionic and aerospace control hardware, caused by negative environmental
impacts like increasing heat or cosmic radiation, can lead to silent data corruption and unde-
tected incorrect system outputs. Traditionally, redundant and specifically protected hardware is
used, which is expensive and available only on restricted markets. The application of software-
implemented fault detectors like SWIFT, SWIFT ECF, or Software Encoded Processing is a
promising alternative solution that offers the opportunity to use cost effective, but less reliable
hardware. However, this entails generation of extra source code, resulting in a considerable
computational overhead and, as a consequence, leads to performance degradations. This article
introduces an approach that aims minimizing the negative performance impact while maintain-
ing the required system reliability level. It is shown that selective and balanced application
of the software-implemented fault detectors solely to the most critical parts of the control
software is an efficient system design solution. The presented approach uses a combination of
two methods for reliability and performance analysis. Both methods are used for the quantitative
exploration of different strategies of selective protection and allow finding a balance between
system performance and reliability. The article demonstrates the application of the introduced
approach using embedded flight control software of an UAV.

Keywords: Flight control software, UAV, error propagation, reliability, performance,
optimization, Markov models, model-based design.

1. INTRODUCTION

1.1 Motivation

Usually, software in safety-critical systems, assumes a fault
free execution through the executing hardware. However,
decreasing feature sizes of integrated circuits (e.g. CPU
and memory) and increasing system complexity lead to
less reliable hardware (Borkar (2005)). Hardware failures
can cause hidden data corruption and may result in unde-
tected incorrect system outputs (silent data corruption).
In avionic and aerospace applications, an undetected erro-
neous output can cause hazardous issues. A failure of the
Russian space mission ”Phobos Grunt” in February 2012
is an example, see Oberg (2012). According to the official
report (Roskosmos (2012)), this failure has happened be-
cause of an SRAM fault, caused by ”a local influence of
heavy charged particles” (cosmic radiation).

The example in Fig. 1 illustrates a hardware failure in
focus. A negative environmental impact corrupts a part of
memory of computing hardware. This results in a single
or several bit flips that change the application state, e.g.
the value of a critical variable as it shown in Fig. 1.
Later, during an execution of the software function f2,
this erroneous value is read and propagated further to
the system output. An error in the output is considered
as a system failure that may lead to various unintended

Erroneous
critical output

HW

memory

SW

function f1

SW

funciton f2
Input Output

HW failure
e.g. a bit-flip

S
y
s
te

m
 b

o
u
n
d
a
ry

Increasing

heat

Lowering

voltage

Cosmic

radiation

Fig. 1. An example of a hardware failure: A negative
environmental impact corrupts a part of system’s
memory, this changes the value of a stored variable
and cause a data error that propagates to a critical
system output.

consequences. Similar hardware failures leading to data
corruption can happen not only in memory, but in a CPU,
a bus or other computing hardware parts.

This article is organized as follows. The remaining part
of this section presents the relevant state of the art and
the basic concept of the introduced method. Section 2
demonstrates a case-study UAV platform. Section 3 intro-
duces the design optimization method itself. Concluding,
Section 4 describes the method evaluation and results.

20th IFAC Symposium on Automatic Control in Aerospace
August 21-25, 2016. Sherbrooke, Quebec, Canada

Copyright © 2016 IFAC 248

Flight Control Software Failure Mitigation:
Design Optimization for

Software-implemented Fault Detectors

Andrey Morozov ∗ Klaus Janschek ∗

∗ Technische Universität Dresden, Institute of Automation,
01062 Dresden, Germany (e-mail: {andrey.morozov,

klaus.janschek}@tu-dresden.de)

Abstract: Failures of avionic and aerospace control hardware, caused by negative environmental
impacts like increasing heat or cosmic radiation, can lead to silent data corruption and unde-
tected incorrect system outputs. Traditionally, redundant and specifically protected hardware is
used, which is expensive and available only on restricted markets. The application of software-
implemented fault detectors like SWIFT, SWIFT ECF, or Software Encoded Processing is a
promising alternative solution that offers the opportunity to use cost effective, but less reliable
hardware. However, this entails generation of extra source code, resulting in a considerable
computational overhead and, as a consequence, leads to performance degradations. This article
introduces an approach that aims minimizing the negative performance impact while maintain-
ing the required system reliability level. It is shown that selective and balanced application
of the software-implemented fault detectors solely to the most critical parts of the control
software is an efficient system design solution. The presented approach uses a combination of
two methods for reliability and performance analysis. Both methods are used for the quantitative
exploration of different strategies of selective protection and allow finding a balance between
system performance and reliability. The article demonstrates the application of the introduced
approach using embedded flight control software of an UAV.

Keywords: Flight control software, UAV, error propagation, reliability, performance,
optimization, Markov models, model-based design.

1. INTRODUCTION

1.1 Motivation

Usually, software in safety-critical systems, assumes a fault
free execution through the executing hardware. However,
decreasing feature sizes of integrated circuits (e.g. CPU
and memory) and increasing system complexity lead to
less reliable hardware (Borkar (2005)). Hardware failures
can cause hidden data corruption and may result in unde-
tected incorrect system outputs (silent data corruption).
In avionic and aerospace applications, an undetected erro-
neous output can cause hazardous issues. A failure of the
Russian space mission ”Phobos Grunt” in February 2012
is an example, see Oberg (2012). According to the official
report (Roskosmos (2012)), this failure has happened be-
cause of an SRAM fault, caused by ”a local influence of
heavy charged particles” (cosmic radiation).

The example in Fig. 1 illustrates a hardware failure in
focus. A negative environmental impact corrupts a part of
memory of computing hardware. This results in a single
or several bit flips that change the application state, e.g.
the value of a critical variable as it shown in Fig. 1.
Later, during an execution of the software function f2,
this erroneous value is read and propagated further to
the system output. An error in the output is considered
as a system failure that may lead to various unintended

Erroneous
critical output

HW

memory

SW

function f1

SW

funciton f2
Input Output

HW failure
e.g. a bit-flip

S
y
s
te

m
 b

o
u
n
d
a
ry

Increasing

heat

Lowering

voltage

Cosmic

radiation

Fig. 1. An example of a hardware failure: A negative
environmental impact corrupts a part of system’s
memory, this changes the value of a stored variable
and cause a data error that propagates to a critical
system output.

consequences. Similar hardware failures leading to data
corruption can happen not only in memory, but in a CPU,
a bus or other computing hardware parts.

This article is organized as follows. The remaining part
of this section presents the relevant state of the art and
the basic concept of the introduced method. Section 2
demonstrates a case-study UAV platform. Section 3 intro-
duces the design optimization method itself. Concluding,
Section 4 describes the method evaluation and results.

20th IFAC Symposium on Automatic Control in Aerospace
August 21-25, 2016. Sherbrooke, Quebec, Canada

Copyright © 2016 IFAC 248

Flight Control Software Failure Mitigation:
Design Optimization for

Software-implemented Fault Detectors

Andrey Morozov ∗ Klaus Janschek ∗

∗ Technische Universität Dresden, Institute of Automation,
01062 Dresden, Germany (e-mail: {andrey.morozov,

klaus.janschek}@tu-dresden.de)

Abstract: Failures of avionic and aerospace control hardware, caused by negative environmental
impacts like increasing heat or cosmic radiation, can lead to silent data corruption and unde-
tected incorrect system outputs. Traditionally, redundant and specifically protected hardware is
used, which is expensive and available only on restricted markets. The application of software-
implemented fault detectors like SWIFT, SWIFT ECF, or Software Encoded Processing is a
promising alternative solution that offers the opportunity to use cost effective, but less reliable
hardware. However, this entails generation of extra source code, resulting in a considerable
computational overhead and, as a consequence, leads to performance degradations. This article
introduces an approach that aims minimizing the negative performance impact while maintain-
ing the required system reliability level. It is shown that selective and balanced application
of the software-implemented fault detectors solely to the most critical parts of the control
software is an efficient system design solution. The presented approach uses a combination of
two methods for reliability and performance analysis. Both methods are used for the quantitative
exploration of different strategies of selective protection and allow finding a balance between
system performance and reliability. The article demonstrates the application of the introduced
approach using embedded flight control software of an UAV.

Keywords: Flight control software, UAV, error propagation, reliability, performance,
optimization, Markov models, model-based design.

1. INTRODUCTION

1.1 Motivation

Usually, software in safety-critical systems, assumes a fault
free execution through the executing hardware. However,
decreasing feature sizes of integrated circuits (e.g. CPU
and memory) and increasing system complexity lead to
less reliable hardware (Borkar (2005)). Hardware failures
can cause hidden data corruption and may result in unde-
tected incorrect system outputs (silent data corruption).
In avionic and aerospace applications, an undetected erro-
neous output can cause hazardous issues. A failure of the
Russian space mission ”Phobos Grunt” in February 2012
is an example, see Oberg (2012). According to the official
report (Roskosmos (2012)), this failure has happened be-
cause of an SRAM fault, caused by ”a local influence of
heavy charged particles” (cosmic radiation).

The example in Fig. 1 illustrates a hardware failure in
focus. A negative environmental impact corrupts a part of
memory of computing hardware. This results in a single
or several bit flips that change the application state, e.g.
the value of a critical variable as it shown in Fig. 1.
Later, during an execution of the software function f2,
this erroneous value is read and propagated further to
the system output. An error in the output is considered
as a system failure that may lead to various unintended

Erroneous
critical output

HW

memory

SW

function f1

SW

funciton f2
Input Output

HW failure
e.g. a bit-flip

S
y
s
te

m
 b

o
u
n
d
a
ry

Increasing

heat

Lowering

voltage

Cosmic

radiation

Fig. 1. An example of a hardware failure: A negative
environmental impact corrupts a part of system’s
memory, this changes the value of a stored variable
and cause a data error that propagates to a critical
system output.

consequences. Similar hardware failures leading to data
corruption can happen not only in memory, but in a CPU,
a bus or other computing hardware parts.

This article is organized as follows. The remaining part
of this section presents the relevant state of the art and
the basic concept of the introduced method. Section 2
demonstrates a case-study UAV platform. Section 3 intro-
duces the design optimization method itself. Concluding,
Section 4 describes the method evaluation and results.

20th IFAC Symposium on Automatic Control in Aerospace
August 21-25, 2016. Sherbrooke, Quebec, Canada

Copyright © 2016 IFAC 248

 Andrey Morozov et al. / IFAC-PapersOnLine 49-17 (2016) 248–253 249

Flight Control Software Failure Mitigation:
Design Optimization for

Software-implemented Fault Detectors

Andrey Morozov ∗ Klaus Janschek ∗

∗ Technische Universität Dresden, Institute of Automation,
01062 Dresden, Germany (e-mail: {andrey.morozov,

klaus.janschek}@tu-dresden.de)

Abstract: Failures of avionic and aerospace control hardware, caused by negative environmental
impacts like increasing heat or cosmic radiation, can lead to silent data corruption and unde-
tected incorrect system outputs. Traditionally, redundant and specifically protected hardware is
used, which is expensive and available only on restricted markets. The application of software-
implemented fault detectors like SWIFT, SWIFT ECF, or Software Encoded Processing is a
promising alternative solution that offers the opportunity to use cost effective, but less reliable
hardware. However, this entails generation of extra source code, resulting in a considerable
computational overhead and, as a consequence, leads to performance degradations. This article
introduces an approach that aims minimizing the negative performance impact while maintain-
ing the required system reliability level. It is shown that selective and balanced application
of the software-implemented fault detectors solely to the most critical parts of the control
software is an efficient system design solution. The presented approach uses a combination of
two methods for reliability and performance analysis. Both methods are used for the quantitative
exploration of different strategies of selective protection and allow finding a balance between
system performance and reliability. The article demonstrates the application of the introduced
approach using embedded flight control software of an UAV.

Keywords: Flight control software, UAV, error propagation, reliability, performance,
optimization, Markov models, model-based design.

1. INTRODUCTION

1.1 Motivation

Usually, software in safety-critical systems, assumes a fault
free execution through the executing hardware. However,
decreasing feature sizes of integrated circuits (e.g. CPU
and memory) and increasing system complexity lead to
less reliable hardware (Borkar (2005)). Hardware failures
can cause hidden data corruption and may result in unde-
tected incorrect system outputs (silent data corruption).
In avionic and aerospace applications, an undetected erro-
neous output can cause hazardous issues. A failure of the
Russian space mission ”Phobos Grunt” in February 2012
is an example, see Oberg (2012). According to the official
report (Roskosmos (2012)), this failure has happened be-
cause of an SRAM fault, caused by ”a local influence of
heavy charged particles” (cosmic radiation).

The example in Fig. 1 illustrates a hardware failure in
focus. A negative environmental impact corrupts a part of
memory of computing hardware. This results in a single
or several bit flips that change the application state, e.g.
the value of a critical variable as it shown in Fig. 1.
Later, during an execution of the software function f2,
this erroneous value is read and propagated further to
the system output. An error in the output is considered
as a system failure that may lead to various unintended

Erroneous
critical output

HW

memory

SW

function f1

SW

funciton f2
Input Output

HW failure
e.g. a bit-flip

S
y
s
te

m
 b

o
u
n
d
a
ry

Increasing

heat

Lowering

voltage

Cosmic

radiation

Fig. 1. An example of a hardware failure: A negative
environmental impact corrupts a part of system’s
memory, this changes the value of a stored variable
and cause a data error that propagates to a critical
system output.

consequences. Similar hardware failures leading to data
corruption can happen not only in memory, but in a CPU,
a bus or other computing hardware parts.

This article is organized as follows. The remaining part
of this section presents the relevant state of the art and
the basic concept of the introduced method. Section 2
demonstrates a case-study UAV platform. Section 3 intro-
duces the design optimization method itself. Concluding,
Section 4 describes the method evaluation and results.

20th IFAC Symposium on Automatic Control in Aerospace
August 21-25, 2016. Sherbrooke, Quebec, Canada

Copyright © 2016 IFAC 248

Flight Control Software Failure Mitigation:
Design Optimization for

Software-implemented Fault Detectors

Andrey Morozov ∗ Klaus Janschek ∗

∗ Technische Universität Dresden, Institute of Automation,
01062 Dresden, Germany (e-mail: {andrey.morozov,

klaus.janschek}@tu-dresden.de)

Abstract: Failures of avionic and aerospace control hardware, caused by negative environmental
impacts like increasing heat or cosmic radiation, can lead to silent data corruption and unde-
tected incorrect system outputs. Traditionally, redundant and specifically protected hardware is
used, which is expensive and available only on restricted markets. The application of software-
implemented fault detectors like SWIFT, SWIFT ECF, or Software Encoded Processing is a
promising alternative solution that offers the opportunity to use cost effective, but less reliable
hardware. However, this entails generation of extra source code, resulting in a considerable
computational overhead and, as a consequence, leads to performance degradations. This article
introduces an approach that aims minimizing the negative performance impact while maintain-
ing the required system reliability level. It is shown that selective and balanced application
of the software-implemented fault detectors solely to the most critical parts of the control
software is an efficient system design solution. The presented approach uses a combination of
two methods for reliability and performance analysis. Both methods are used for the quantitative
exploration of different strategies of selective protection and allow finding a balance between
system performance and reliability. The article demonstrates the application of the introduced
approach using embedded flight control software of an UAV.

Keywords: Flight control software, UAV, error propagation, reliability, performance,
optimization, Markov models, model-based design.

1. INTRODUCTION

1.1 Motivation

Usually, software in safety-critical systems, assumes a fault
free execution through the executing hardware. However,
decreasing feature sizes of integrated circuits (e.g. CPU
and memory) and increasing system complexity lead to
less reliable hardware (Borkar (2005)). Hardware failures
can cause hidden data corruption and may result in unde-
tected incorrect system outputs (silent data corruption).
In avionic and aerospace applications, an undetected erro-
neous output can cause hazardous issues. A failure of the
Russian space mission ”Phobos Grunt” in February 2012
is an example, see Oberg (2012). According to the official
report (Roskosmos (2012)), this failure has happened be-
cause of an SRAM fault, caused by ”a local influence of
heavy charged particles” (cosmic radiation).

The example in Fig. 1 illustrates a hardware failure in
focus. A negative environmental impact corrupts a part of
memory of computing hardware. This results in a single
or several bit flips that change the application state, e.g.
the value of a critical variable as it shown in Fig. 1.
Later, during an execution of the software function f2,
this erroneous value is read and propagated further to
the system output. An error in the output is considered
as a system failure that may lead to various unintended

Erroneous
critical output

HW

memory

SW

function f1

SW

funciton f2
Input Output

HW failure
e.g. a bit-flip

S
y
s
te

m
 b

o
u
n
d
a
ry

Increasing

heat

Lowering

voltage

Cosmic

radiation

Fig. 1. An example of a hardware failure: A negative
environmental impact corrupts a part of system’s
memory, this changes the value of a stored variable
and cause a data error that propagates to a critical
system output.

consequences. Similar hardware failures leading to data
corruption can happen not only in memory, but in a CPU,
a bus or other computing hardware parts.

This article is organized as follows. The remaining part
of this section presents the relevant state of the art and
the basic concept of the introduced method. Section 2
demonstrates a case-study UAV platform. Section 3 intro-
duces the design optimization method itself. Concluding,
Section 4 describes the method evaluation and results.

20th IFAC Symposium on Automatic Control in Aerospace
August 21-25, 2016. Sherbrooke, Quebec, Canada

Copyright © 2016 IFAC 248

Flight Control Software Failure Mitigation:
Design Optimization for

Software-implemented Fault Detectors

Andrey Morozov ∗ Klaus Janschek ∗

∗ Technische Universität Dresden, Institute of Automation,
01062 Dresden, Germany (e-mail: {andrey.morozov,

klaus.janschek}@tu-dresden.de)

Abstract: Failures of avionic and aerospace control hardware, caused by negative environmental
impacts like increasing heat or cosmic radiation, can lead to silent data corruption and unde-
tected incorrect system outputs. Traditionally, redundant and specifically protected hardware is
used, which is expensive and available only on restricted markets. The application of software-
implemented fault detectors like SWIFT, SWIFT ECF, or Software Encoded Processing is a
promising alternative solution that offers the opportunity to use cost effective, but less reliable
hardware. However, this entails generation of extra source code, resulting in a considerable
computational overhead and, as a consequence, leads to performance degradations. This article
introduces an approach that aims minimizing the negative performance impact while maintain-
ing the required system reliability level. It is shown that selective and balanced application
of the software-implemented fault detectors solely to the most critical parts of the control
software is an efficient system design solution. The presented approach uses a combination of
two methods for reliability and performance analysis. Both methods are used for the quantitative
exploration of different strategies of selective protection and allow finding a balance between
system performance and reliability. The article demonstrates the application of the introduced
approach using embedded flight control software of an UAV.

Keywords: Flight control software, UAV, error propagation, reliability, performance,
optimization, Markov models, model-based design.

1. INTRODUCTION

1.1 Motivation

Usually, software in safety-critical systems, assumes a fault
free execution through the executing hardware. However,
decreasing feature sizes of integrated circuits (e.g. CPU
and memory) and increasing system complexity lead to
less reliable hardware (Borkar (2005)). Hardware failures
can cause hidden data corruption and may result in unde-
tected incorrect system outputs (silent data corruption).
In avionic and aerospace applications, an undetected erro-
neous output can cause hazardous issues. A failure of the
Russian space mission ”Phobos Grunt” in February 2012
is an example, see Oberg (2012). According to the official
report (Roskosmos (2012)), this failure has happened be-
cause of an SRAM fault, caused by ”a local influence of
heavy charged particles” (cosmic radiation).

The example in Fig. 1 illustrates a hardware failure in
focus. A negative environmental impact corrupts a part of
memory of computing hardware. This results in a single
or several bit flips that change the application state, e.g.
the value of a critical variable as it shown in Fig. 1.
Later, during an execution of the software function f2,
this erroneous value is read and propagated further to
the system output. An error in the output is considered
as a system failure that may lead to various unintended

Erroneous
critical output

HW

memory

SW

function f1

SW

funciton f2
Input Output

HW failure
e.g. a bit-flip

S
y
s
te

m
 b

o
u
n
d
a
ry

Increasing

heat

Lowering

voltage

Cosmic

radiation

Fig. 1. An example of a hardware failure: A negative
environmental impact corrupts a part of system’s
memory, this changes the value of a stored variable
and cause a data error that propagates to a critical
system output.

consequences. Similar hardware failures leading to data
corruption can happen not only in memory, but in a CPU,
a bus or other computing hardware parts.

This article is organized as follows. The remaining part
of this section presents the relevant state of the art and
the basic concept of the introduced method. Section 2
demonstrates a case-study UAV platform. Section 3 intro-
duces the design optimization method itself. Concluding,
Section 4 describes the method evaluation and results.

20th IFAC Symposium on Automatic Control in Aerospace
August 21-25, 2016. Sherbrooke, Quebec, Canada

Copyright © 2016 IFAC 248

Flight Control Software Failure Mitigation:
Design Optimization for

Software-implemented Fault Detectors

Andrey Morozov ∗ Klaus Janschek ∗

∗ Technische Universität Dresden, Institute of Automation,
01062 Dresden, Germany (e-mail: {andrey.morozov,

klaus.janschek}@tu-dresden.de)

Abstract: Failures of avionic and aerospace control hardware, caused by negative environmental
impacts like increasing heat or cosmic radiation, can lead to silent data corruption and unde-
tected incorrect system outputs. Traditionally, redundant and specifically protected hardware is
used, which is expensive and available only on restricted markets. The application of software-
implemented fault detectors like SWIFT, SWIFT ECF, or Software Encoded Processing is a
promising alternative solution that offers the opportunity to use cost effective, but less reliable
hardware. However, this entails generation of extra source code, resulting in a considerable
computational overhead and, as a consequence, leads to performance degradations. This article
introduces an approach that aims minimizing the negative performance impact while maintain-
ing the required system reliability level. It is shown that selective and balanced application
of the software-implemented fault detectors solely to the most critical parts of the control
software is an efficient system design solution. The presented approach uses a combination of
two methods for reliability and performance analysis. Both methods are used for the quantitative
exploration of different strategies of selective protection and allow finding a balance between
system performance and reliability. The article demonstrates the application of the introduced
approach using embedded flight control software of an UAV.

Keywords: Flight control software, UAV, error propagation, reliability, performance,
optimization, Markov models, model-based design.

1. INTRODUCTION

1.1 Motivation

Usually, software in safety-critical systems, assumes a fault
free execution through the executing hardware. However,
decreasing feature sizes of integrated circuits (e.g. CPU
and memory) and increasing system complexity lead to
less reliable hardware (Borkar (2005)). Hardware failures
can cause hidden data corruption and may result in unde-
tected incorrect system outputs (silent data corruption).
In avionic and aerospace applications, an undetected erro-
neous output can cause hazardous issues. A failure of the
Russian space mission ”Phobos Grunt” in February 2012
is an example, see Oberg (2012). According to the official
report (Roskosmos (2012)), this failure has happened be-
cause of an SRAM fault, caused by ”a local influence of
heavy charged particles” (cosmic radiation).

The example in Fig. 1 illustrates a hardware failure in
focus. A negative environmental impact corrupts a part of
memory of computing hardware. This results in a single
or several bit flips that change the application state, e.g.
the value of a critical variable as it shown in Fig. 1.
Later, during an execution of the software function f2,
this erroneous value is read and propagated further to
the system output. An error in the output is considered
as a system failure that may lead to various unintended

Erroneous
critical output

HW

memory

SW

function f1

SW

funciton f2
Input Output

HW failure
e.g. a bit-flip

S
y
s
te

m
 b

o
u
n
d
a
ry

Increasing

heat

Lowering

voltage

Cosmic

radiation

Fig. 1. An example of a hardware failure: A negative
environmental impact corrupts a part of system’s
memory, this changes the value of a stored variable
and cause a data error that propagates to a critical
system output.

consequences. Similar hardware failures leading to data
corruption can happen not only in memory, but in a CPU,
a bus or other computing hardware parts.

This article is organized as follows. The remaining part
of this section presents the relevant state of the art and
the basic concept of the introduced method. Section 2
demonstrates a case-study UAV platform. Section 3 intro-
duces the design optimization method itself. Concluding,
Section 4 describes the method evaluation and results.

20th IFAC Symposium on Automatic Control in Aerospace
August 21-25, 2016. Sherbrooke, Quebec, Canada

Copyright © 2016 IFAC 248

Protected system
Original system

Error-prone

HW

SW

Input Undetected

error in output

SW

Message

"Error detected"
Input

Fast but unreliable Reliable but slow

Software

protection

method

Protection superstructure

Error-prone

HW

Fig. 2. A general principle of software-based system pro-
tection using a sofware-implemented fault detector.
A data error caused by a hardware fault is detected
on a software level. This results in an error-message
instead of an undetected error.

1.2 Traditional Hardware-implemented Solutions

Traditionally, specific custom hardware protects systems
from the situations like the one that is shown in Fig. 1. For
example: heat and radiation protected hardware (hard-
ened chips, bipolar integrated circuits, magnetoresistive
RAM, shielding etc.), or hardware redundancy (dual or
triple module redundancy). However, these solutions have
several serious disadvantages. First of all, such custom
systems are expensive and their markets are restricted.
Second, custom hardware is usually an order of magnitude
slower than up-to-date commodity hardware (Barnaby
(2005)). Third, custom hardware solutions age over time.
This results in appearance of new unexpected errors in
critical components (Borkar (2005)). Fourth, custom hard-
ware leads to critical dependencies on a single supplier,
which can be unacceptable for long-running systems.

1.3 Software-implemented Hardware Fault Detectors

An alternative solution is the application of software-
implemented hardware fault detectors (SFDs) like SWIFT
(Reis et al. (2005)), SWIFT ECF (Reis et al. (2007)), or
Software Encoded Processing (AN-, ANB-, ANBD-codes)
(Schiffel et al. (2010)). These techniques can not prevent
hardware faults but they can detect them early enough
and prevent data errors in system. The principle of an
SFD application is shown in Fig. 2.

The SFDs offer the opportunity for using cost effective
but less reliable hardware, while maintaining the required
level of system reliability. Nowadays, independent R&D
projects based on cost effective platforms like CubeSats
become more and more popular in the aerospace domain.
SFDs do not require any special hardware. They are
cheaper, more flexible, and have sufficiently high error
detection rates (Schiffel et al. (2010)) in comparison with
traditional hardware solutions. Moreover, SFDs can be
applied automatically. This results in shorter development
cycles and the minimization of programmer’s errors.

1.4 Introduced Design Optimization Method

However, existing software-implemented solutions also
have a strong drawback that limits their utilization - a
considerable computational overhead. Application of SFDs

Original
software Decomposition

... ...

Selective application of SFDs

e1 e2

e3 e4

SWIFT
(e1) e2

e3 AN(e4)

ANB
(e2)

SWIFT
(e3)

ANBD
(e4)

AN(e1) ANBD
(e2)

ANBD
(e3)

ANBD
(e4)

ANBD
(e1)

None

Reliability:

Perfromance:

SWIFT AN ANB ANBD

Low

High

High

Low

SFD type:

Fig. 3. System decomposition and selective application of
different combinations of SFD result in different vari-
ants of selectively protected software with different
performance and reliability characteristics.

entails generation of extra source code (”protection super-
structure” in Fig. 2). This considerably increases the sys-
tem execution time and leads to higher memory consump-
tion and as a consequence leads to performance degrada-
tions, which are critical for control algorithms. This article
is focused on balancing the performance degradation of
SFDs versus increase of system reliability. Particularly, it
is aimed to answer the following question:

How to minimize the negative performance impact of
software-implemented hardware fault detectors while main-
taining the required system reliability level?

We claim that it makes sense to apply SFDs selectively,
only to the most critical parts of the system. This will max-
imize the achieved error-detection rate, while minimizing
the performance overhead.

In Nakka et al. (2007), the authors also address reliability
and performance optimization. As opposed to SFDs’ appli-
cation, this article describes reliability improvement using
processor-level selective replication. However, the key idea
is also to replicate only critical parts of the code. This re-
search has shown the following quantitative results: ”With
about 59% less overhead than full duplication, selective
replication detects 97% of the data errors and 87% of the
instruction errors that were covered by full duplication”.

In this article, we introduce a method for identification
of a suitable places for SFD application through a proba-
bilistic quantitative analysis of the original system. Fig. 3
and Fig.4 demonstrate the general idea of the proposed
method.

First, we decompose the system into separate elements in
order to apply SFDs selectively (see Fig. 3). In general,
depending on software size, complexity, design and pro-
gramming paradigms it can be done on different abstract
levels: components, functions, basic blocks of code etc.
In our case study, software functions play the role of the
elements. This is reasoned by our software design approach
with a UML Activity Diagram: Each action block models
a functions of the control software, see Fig. 5 c).

IFAC ACA 2016
August 21-25, 2016. Quebec, Canada

249

Download English Version:

https://daneshyari.com/en/article/5003061

Download Persian Version:

https://daneshyari.com/article/5003061

Daneshyari.com

https://daneshyari.com/en/article/5003061
https://daneshyari.com/article/5003061
https://daneshyari.com

