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Abstract: This paper focuses on the fixed-time minimum-fuel rendezvous between close elliptic
orbits of an active spacecraft with a passive target spacecraft, assuming a linear impulsive
setting and a Keplerian relative motion. Following earlier works developed in the 1960s,
the original optimal control problem is transformed into a semi-infinite convex optimization
problem using a relaxation scheme and duality theory in normed linear spaces. A new numerical
convergent algorithm based on discretization methods is designed to solve this problem. Its
solution is then used in a general simple procedure dedicated to the computation of the
optimal velocity increments and optimal impulses locations. It is also shown that the semi-
infinite convex programming has an analytical solution for the out-of-plane rendezvous problem.
Different realistic numerical examples illustrate these results.
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1. INTRODUCTION

Since the first space missions (Gemini, Apollo, Vostok)
involving more than one vehicle, space rendezvous be-
tween two spacecraft has become a key technology raising
relevant open control issues. Formation flight (PRISMA),
on-orbit satellite servicing or supply missions to the Inter-
national Space Station (ISS) are all examples of projects
that require adequate rendezvous planning tools. A main
challenge is to achieve autonomous far range rendezvous
on elliptical orbits while preserving optimality in terms of
fuel consumption. In short, the far range rendezvous is an
orbital transfer between an active chaser spacecraft and
a passive target spacecraft, with specified initial and final
conditions, over a fixed or a free time period. Searching
for the guidance law that achieves the maneuver with
the lowest possible fuel consumption leads to define a
minimum-fuel optimal control problem.

In this article, the fixed-time linearized fuel-optimal im-
pulsive space rendezvous problem as defined in Carter and
Brient (1995), is studied assuming a linearized Keplerian
relative motion. The impulsive approximation for the
thrust means that instantaneous velocity increments are
applied to the chaser whereas its position is continuous.
Indirect approaches, based on the optimality conditions
derived from the Pontryagin’s maximum principle and
leading to the so-called primer vector theory (Lawden
(1963)), have been extensively studied. For a fixed number
of impulses, necessary and sufficient conditions can be
derived (Carter and Brient (1995)). However due to the
nonconvex and polynomial nature of these conditions, a
numerical solution is still difficult to compute and would
only be suboptimal for the original rendezvous problem

for which the number of possible maneuvers is free. In
Arzelier et al. (2013), a mixed iterative algorithm com-
bines variational tests with sophisticated numerical tools
from algebraic geometry to solve these polynomial neces-
sary and sufficient conditions of optimality and avoid the
local optimization step. However, this algorithm remains
heuristic with no proof of convergence in all cases and
may exhibit only suboptimal solutions on some instances.

Neustadt (1964) proposed an important theoretical con-
tribution for the optimal control problem: it is recast to
a semi-infinite optimization problem, using a relaxation
scheme and the duality theory in minimum-norm prob-
lems. Claeys et al. (2013) revisit his approach from the
angle of generalized moment problems, by formulating it
as a linear programming problem on measures. In this ap-
proach, the numerical solving is rather cumbersome since
one needs high degree polynomial approximations for
building hierarchies of linear-matrix inequalities (LMIs).
Also, they consider only the case of ungimbaled identical
thrusters, which gives a linear problem.

Following Neustadt (1964), we propose a new numerical
algorithm to solve the fixed-time impulsive linear ren-
dezvous without fixing a priori the number of impulses,
and whose convergence is rigorously shown. Firstly, we
focus on the moment problem formulation (Sec. 2) and
recall topological duality theory results from Luenberger
(1969) and Neustadt (1964), which allow for the moment
problem to be transformed into a Semi-Infinite Convex
Programming (SICP) Problem (Sec. 4). The novelty of
our approach is to use discretization methods Reemt-
sen and Rückman (1998) to solve the SICP problem.
A convergent numerical algorithm is designed in Sec. 4,
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whose solution is the optimal primer vector of the original
rendezvous problem. An estimation of the numerical error
made on the optimal cost of the original problem, is also
provided. Then, the optimal impulses location and the
optimal velocity increments are retrieved via a simple pro-
cedure fully exploiting results stated in Neustadt (1964).
The efficiency of the proposed algorithm is illustrated with
two different realistic numerical examples.

Notations: a, e, ν are respectively the semi-major axis,
the eccentricity and the true anomaly of the reference
orbit. N is the number of velocity increments while νi,
i = 1, · · · , N , define impulses application locations. The
velocity increment at νi will be denoted by ∆V (νi).
{bi}i=1,··· ,N is a sequence of variables bi, i = 1, · · · , N ,
and sgn(z) is the sign function of the variable z. The
prime denotes differentiation with respect to the true
anomaly ν. Op×m and 1m denote respectively the null
matrix of dimensions p × m and the identity matrix of
dimension m. Let r ∈ N∗ and (p, q) ∈ R2 such that:
1 ≤ p ≤ ∞ and 1

p + 1
q = 1. Classically, C([ν0, νf ],Rr) is

the Banach space of continuous functions f : [ν0, νf ] → Rr

equipped with the norm ‖f‖q = sup
ν0≤ν≤νf

‖f(ν)‖q. Denote

by L1,p([ν0, νf ],Rr) the normed linear space of Lebesgue
integrable functions from [ν0, νf ] to Rr with the norm

given by: ‖u‖1,p =

∫ νf

ν0

‖u(ν)‖pdν. Let BV([ν0, νf ],Rr)

be the space of functions of bounded variation over the

interval [ν0, νf ] with the norm: ‖g‖tv,p = sup
Pκ

κ∑
i=1

‖g(νi)−

g(νi−1)‖p, where the supremum is taken over all finite
partitions Pκ = (νi)i=1,...,κ of [ν0, νf ]. For a symmetric
real matrix S ∈ Rn×n, the notation S � 0 (S � 0) stands
for the negative (positive) semi-definiteness of S. Finally,
χA is the indicator function of the set A.

2. PROBLEM STATEMENT AND PRELIMINARIES

This section first introduces and reviews notations and
assumptions for the minimum-fuel linearized fixed-time
rendezvous problem. Then, adopting the approach of
Neustadt (1964), the usual optimal control formulation
of the rendezvous problem is recast as a moment problem
defined on the functional space L1,p([ν0, νf ],Rr).

2.1 Optimal control formulation of the rendezvous problem

Typically, in a rendezvous situation, a spacecraft is in
sufficiently close proximity to allow for the linearization
of the relative equations of motion. Their validity is guar-
anteed when the distance between the target and the
chaser is assumed to be small compared to the radius of
the target vehicle orbit. The equations of relative motion
are written in a moving Local-Vertical-Local-Horizontal
(LVLH) frame located at the center of gravity of a passive
target and which rotates with its angular velocity. In this
frame, the state vector XT = [ px py pz vx vy vz ] is com-
posed of the positions and velocities of a chaser satellite in
the in-track, cross-track and radial axes, respectively. Un-
der the previous assumptions and using the true anomaly
of the target-vehicle orbit as the independent variable, a
system of linear differential equations with periodic coeffi-
cients is easily obtained and the considered minimum-fuel
linearized rendezvous problem may be reformulated as the
following optimal control problem:

Problem 1. (Optimal control problem)
Find ū ∈ L1,p([ν0, νf ],R3) solution of the optimal control
problem:

inf
u

‖u‖1,p = inf
u

∫ νf

ν0

‖u(ν)‖pdν

s.t. X ′(ν) = A(ν)X(ν) +B(ν)u(ν), ∀ ν ∈ [ν0, νf ]
X(ν0) = X0, X(νf ) = Xf ∈ R6, ν0, νf fixed,

(1)

where matrices A(ν) and B(ν) define the state-space
model of relative dynamics given by Tschauner (1967):

A(ν) =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 2
0 −1 0 0 0 0
0 0 3/(1 + e cos(ν)) −2 0 0


 , B(ν) =

[
O3×3
13

1 + e cos(ν)

]

(2)

The form of these matrices shows that the equations
describing motion in the plane of the target-vehicle orbit
and those describing motion normal to the orbit plane
can be decoupled and handled separately. Therefore, the
out-of-plane and in-plane rendezvous can be dealt with
independently: the state vector dimension and the number
of inputs in (1) are denoted n and r, respectively with
n = 2, r = 1 for the out-of-plane case and n = 4, r = 2
for the in-plane case. Due to space limitations, this paper
focuses on the in-plane rendezvous.
Remark 1. In Problem 1, the 1-norm cost captures the
consumption of fuel used. In fact, the performance index
used in Problem 1 has been normalized to stick to the
usual characteristic velocity expressed in m/s.

2.2 A minimum norm moment problem

Following the approach from Neustadt (1964), Problem
1 is now transformed into an equivalent problem of
moment by integrating equation (1). As A ∈ C(R,Rn×n),
the equation (1) has a unique solution that exists for
every X0 ∈ Rn and for all ν ∈ R and for u(ν) ∈
L1,p([ν0, νf ],Rr), (Antsaklis and Michel (2003)):

X(ν) = Φ(ν, ν0)X0 +

∫ ν

ν0

Φ(ν, σ)B(σ)u(σ)dσ, (3)

where Φ(ν, ν0) = ϕ(ν)ϕ−1(ν0) and ϕ(ν) are respec-
tively the transition and Yamanaka-Ankersen fundamen-
tal matrices of Keplerian relative motion Yamanaka and
Ankersen (2002). Let us define the matrix Y (ν) =

ϕ−1(ν)B = [ y1(ν) · · · yn(ν) ]T ∈ Rn×r, then:

c = ϕ−1(νf )X(νf )− ϕ−1(ν0)X0

=

∫ νf

ν0

ϕ−1(σ)B(σ)u(σ)dσ =

∫ νf

ν0

Y (σ)u(σ)dσ.
(4)

It is important to notice for the remainder of the analysis
that for the specific matrices Y (ν) encountered in the ren-
dezvous problem, y1(ν) · · · yn(ν) are linearly independent
elements of C([ν0, νf ],Rr). This will be assumed in the
rest of the paper. It follows from (4) that Problem 1 can
be equivalently written as:
Problem 2. (Minimum norm moment problem) Find ū(t)
∈ L1,p([ν0, νf ],Rr) solution of the minimum norm mo-
ment problem:

inf
u

‖u‖1,p = inf
u

∫ νf

ν0

‖u(ν)‖pdν

s.t.

∫ νf

ν0

Y (σ)u(σ)dσ = c, ν0, νf fixed.
(5)

It is well-known that Problem 2 may not reach its optimal
solution due to concentration effects (see the reference
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