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Abstract

In this paper we analyze a stabilized finite element approximation for the incompressible Navier–Stokes equations based on the sub-
grid-scale concept. The essential point is that we explore the properties of the discrete formulation that results allowing the subgrid-scales
to depend on time. This apparently ‘‘natural’’ idea avoids several inconsistencies of previous formulations and also opens the door to
generalizations.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let us start by writing the incompressible Navier–Stokes
equations. Consider a domain X in Rd , where d ¼ 2 or 3 is
the number of space dimensions, with boundary C ¼ oX, in
which we want to solve an incompressible flow problem in
the time interval ½0; T �. If u is the velocity of the fluid and p

the pressure, the incompressible Navier–Stokes equations are

otu� mDuþ u � ruþrp ¼ f in X; t 2�0; T ½; ð1Þ
r � u ¼ 0 in X; t 2�0; T ½; ð2Þ

where m is the kinematic viscosity and f is the force vector.
These equations must be supplied with an initial condition
of the form u ¼ u0 in X; t ¼ 0, and a boundary condition
which, for simplicity, will be taken as u ¼ 0 on C; t 2�0; T ½.

Let us introduce some standard notation. The space of
functions whose p power (1 6 p <1) is integrable in a
domain X is denoted by LpðxÞ, L1ðxÞ being the space of

bounded functions in X. The space of functions whose dis-
tributional derivatives of order up to m P 0 (integer)
belong to L2ðxÞ is denoted by HmðxÞ. The space H 1

0ðxÞ
consists of functions in H 1ðxÞ vanishing on ox. The topo-
logical dual of H 1

0ðxÞ is denoted by H�1ðxÞ. A bold charac-
ter is used to denote the vector counterpart of all these spaces.

If f and g are functions (or distributions) such that fg is
integrable in the domain x under consideration, we denote

hf ; gix ¼
Z

x
fg dx;

so that, in particular, h�; �ix is the duality pairing between
H�1ðxÞ and H 1

0ðxÞ. When f ; g 2 L2ðxÞ, we write the inner
product as hf ; gix � ðf ; gÞx. The norm in a Banach space X

is denoted by k � kX , and Lpð0; T ; X Þ is the space of time
dependent functions such that their X-norm is Lpð0; T Þ.
This notation is simplified in some cases as follows: ð�; �ÞX �
ð�; �Þ, h�; �iX � h�; �i and k � kL2ðXÞ � k � k.

Using this notation, the velocity and pressure finite ele-
ment spaces for the continuous problem are L2ð0; T ;Vd

0Þ
and L1ð0; T ;Q0Þ (for example), respectively, where Vd

0 :¼
H1

0ðXÞ, Q0 :¼ L2ðXÞ=R. The weak form of the problem
consists in finding ½u; p� 2 L2ð0; T ;Vd

0Þ � L1ð0; T ;Q0Þ such
that
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ðotu; vÞ þ mðru;rvÞ þ hu � ru; vi � ðp;r � vÞ ¼ hf ; vi; ð3Þ
ðq;r � uÞ ¼ 0 ð4Þ

for all ½v; q� 2Vd
0 � Q0, and satisfying the initial condition

in a weak sense.
The Galerkin finite element approximation of problem

(3), (4) consists in seeking the unknowns in finite dimen-
sional spaces Vd

0;h �Vd
0 and Q0;h � Q0 and taking the test

functions also in these spaces. Using the method of lines,
the problem discretized in space, but still continuous in
time, consists in finding ½uhðtÞ; phðtÞ� 2 L2ð0; T ;Vd

0;hÞ�
L1ð0; T ;Q0;hÞ such that

otuh; vhð Þ þ mðruh;rvhÞ þ huh � ruh; vhi � ðph;r � vhÞ
¼ hf ; vhi; ð5Þ

ðqh;r � uhÞ ¼ 0 ð6Þ

for all ½vh; qh� 2Vd
0;h � Q0;h.

Once discretized in time (using for example a finite
difference scheme), it is well known that problem (5), (6)
suffers from different types of numerical instabilities. Two
of them are inherited from the stationary problem, namely,
the dominance of the (nonlinear) convective term over the
viscous one when m is small and the compatibility required
for the velocity and pressure finite element spaces posed by
the inf–sup condition. There are also numerical instabilities
encountered when the time step size of the time discretiza-
tion is small, particularly in early stages of the time
integration.

A vast literature exists dealing with the instabilities due
to the dominance of convection and to the velocity–pressure
compatibility condition. In this work we adopt a stabilized

finite element formulation based on the subgrid-scale con-
cept and, in particular, in the approach introduced by
Hughes in [24,26] for the scalar convection–diffusion equa-
tion. The basic idea is to approximate the effect of the com-
ponent of the continuous solution which cannot be resolved
by the finite element mesh, which we will call subscale, on
the discrete finite element solution. This approach is a gen-
eral framework in which it is possible to design different sta-
bilized formulations. We will restrict our attention to two
approaches, described in [10,11]. In the first case, the veloc-
ity and pressure subscales are taken proportional to the
residual of the finite element component in the momentum
and in the continuity equations, respectively. The bottom
line of the second approach is to take only the component
of these residuals L2 orthogonal to the finite element space.
This idea was first introduced in [8] as an extension of a
stabilization method originally introduced for the Stokes
problem in [12] and fully analyzed for the stationary
Navier–Stokes equations in [13].

However, the main interest of this paper is not how to
stabilize convection-dominated flows or how to be able to
use equal velocity–pressure interpolation, thus avoiding
the need to satisfy the inf–sup condition that problem
(5), (6) demands. Our objective in this paper is to analyze

the formulation that stems from considering time dependent

subscales. In fact, the idea we will follow is not new, and
was already introduced in [11]. In this sense, the present
work can be considered as a continuation of this reference,
with the emphasis placed solely on the consequences of tak-
ing the subscales time dependent. We contribute here with
the study of several properties of the formulation, includ-
ing an analysis of its stability and more numerical experi-
ments to check its performance.

The paper is organized as follows. The numerical formu-
lation is described in Section 2, and its main features and its
stability analysis are presented in Sections 3 and 4, respec-
tively. In the former, we detail the benefits of considering
the subscales time dependent, and how some of the misbe-
haviors of classical stabilized finite element methods are
overcome. We also end Section 3 with a speculative subsec-
tion considering the tracking of subscales along the nonlin-
ear process as a way to model turbulence. This idea was
also pointed out in [11]. The stability analysis of Section
4 is done for the linearized problem, that is, replacing the
advection velocity u by a known velocity a, which is
assumed to be constant. In spite of this simplification, this
stability analysis allows us to highlight the improvement in
the stability of the original Galerkin formulation (5), (6)
introduced by the time dependent subscales. In Section 5
we present the results of three simple numerical examples
that show the benefits of our approach. The paper con-
cludes with some final remarks in Section 6.

2. Stabilized finite element problem

Let us consider a finite element partition of the domain
X with nel elements. A generic element domain will be
denoted by K and its diameter by hK . To simplify the dis-
cussion, we will consider quasi-uniform finite element par-
titions, so that if h ¼ maxKhK and . ¼ minK .K , with .K the
diameter of the ball inscribed in K, the quotient h=.
remains bounded for all partitions. Likewise, we will
assume that all the finite element spaces constructed are con-

tinuous and of the same order for the velocity and the
pressure.

The starting idea of the formulation we propose is the
variational multiscale formulation proposed in [24,26].
Let Vd

0 ¼Vd
0;h �fVd

0, where Vd
0;h is the velocity finite ele-

ment space and fVd
0 any space to complete Vd

0;h in Vd
0. Sim-

ilarly, let Q0 ¼ Q0;h � eQ0. The original continuous problem
(3), (4) is equivalent to find ½uhðtÞ; phðtÞ� 2 L2ð0; T ;Vd

0;hÞ�
L1ð0; T ;Q0;hÞ, as well as ½~uðtÞ; ~pðtÞ� 2 L2ð0; T ;fVd

0Þ�
L1ð0; T ; eQ0Þ, such that

ðotðuh þ ~uÞ; vÞ þ mðrðuh þ ~uÞ;rvÞ þ hðuh þ ~uÞ � rðuh þ ~uÞ; vi
� ðph þ ~p;r � vÞ ¼ hf ; vi; ð7Þ

ðq;r � ðuh þ ~uÞÞ ¼ 0 ð8Þ

for all ½v; q� 2Vd
0 � Q0. These equations can be split into

two systems by taking first ½v; q� ¼ ½vh; qh� 2Vd
0;h � Q0;h

and then ½v; q� ¼ ½~v; ~q� 2 fVd
0 � eQ0. Denoting by n the
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