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Abstract

The numerical Green’s function (NGF) technique, previously proposed by the present authors, is here extended to fracture mechanics
problems involving Reissner’s plate theory. The technique numerically produces a plate bending fundamental Green’s function that auto-
matically includes embedded cracks to be used in the classical boundary element method (BEM) to solve this class of problems. The
applications discussed include torsion, bending moment and shear force loadings. In addition, also presented is a series of numerical
results computed in terms of normalized stress intensity factors to illustrate the good accuracy of the procedure.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Linear Elastic Fracture Mechanics theory employs
stresses as well as rotations and dislocations, in the vicinity
of the crack tip, to obtain reliable stress intensity factor
coefficients, essential in the prediction of tip behaviour
and crack stability. There exist many techniques to model
cracks using the boundary element method (BEM), these
mainly differ in the numerical procedure adopted to include
the cracks into the formulation [9]. Sub-regions discretize
the crack as the continuation of a fictitious interface using
boundary elements for this. The so called dual and dis-
placement discontinuity procedure avoid the interface dis-
cretization but keep the use of boundary elements to
represent the existing crack. The Green’s function
approach, also including the adopted numerical Green’s
function (NGF) treated here, avoids boundary elements
over the crack surfaces, since the fundamental solution
removes boundary integration there. Concerning the
NGF technique, some solutions have been presented in

the literature for plates, as in Telles et al. [8] and, recently,
in Silveira et al. [6] for crack propagation, but all restricted
to in-plane loadings. In the present work, the ability of the
hyper-singular formulation to represent a displacement dis-
continuity is used to develop a NGF solution for Reissner’s
plate [5,10], i.e., for plates with out of plane loadings also
taking into account the transversal shear deformation.
The numerical results presented here include bending
moment, torsion and shear force loadings to confirm the
good accuracy of the procedure.

2. The BEM applied to Reissner’s plate theory

The BEM integral equation for generalized displace-
ments (i.e. rotations and linear out of plane displacement)
in a Reissner’s plate of boundary C is [3]
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where n and x are the source and field points, respectively;R
-- stands for Cauchy’s principal value, CijðnÞ is a geometric
coefficient at n, equal to dij or dij=2 for either an internal
point n or a point on a smooth part of the boundary,
uj(x) and pj(x) stand for generalized displacements (two rota-
tions and one deflection), and generalized tractions (mo-
ment, torsion and shear tractions), respectively; the
fundamental solution, u�ijðn; xÞ and p�ijðn; xÞ, is the standard
[10] infinite domain for Reissner’s plates considering a unit
point load applied in i direction at n; v is Poisson’s ratio
and k is the Reissner constant, k ¼

ffiffiffiffiffi
10
p

=h, where h is the
thickness of the plate. Throughout the paper, the Greek
and the Latin indexes vary from 1–2 and 1–3, respectively.

The domain integral of Eq. (1) represents the transversal
uniform distributed loading, q(x), over the domain X of the
plate. This domain term is not included in what follows (i.e.
qðxÞ ¼ 0 is assumed from now on) since it does not interfere
with the numerical Green’s function evaluation and can be
included as a future development in the final formulation.

Suppose a crack as a boundary cavity in Eq. (1),
denoted by CF ¼ Cþ [ C� (+ and � standing for ‘‘upper’’
and ‘‘lower’’ surfaces of the crack). Consider a null general-
ized tractions over the crack boundary or, at the most,
pjðxþÞ ¼ �pjðx�Þ, what makes null any integrand multi-
plied by the component ðpjðxþÞ þ pjðx�ÞÞ. Writing the
integrals only over boundary C�, the classical and hyper-
singular formulations, derived from Eq. (1) for n 2 X are
expressed as [2]

uiðnÞ ¼
Z

C�
p�ijðn; xÞcjðxÞdCðxÞ; ð2aÞ

piðnÞ ¼
Z

C�
P �ijðn; xÞcjðxÞdCðxÞ; ð2bÞ

where cjðxÞ ¼ ujðxþÞ � ujðx�Þ are the generalized crack
openings, i.e., the discontinuities in rotations and in deflec-
tion at x, and P �ijðn; xÞ are the properly manipulated deriv-
atives of the standard fundamental solution [3], obtained
following the traction boundary integral procedure, ex-
pressed as

P �ac ¼
Dð1� vÞ

4pr2

�
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�
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in which, D ¼ Eh3

12ð1�v2Þ is the flexural rigidity of the plate, E is
the Young modulus; only in Eq. (3), n represents the direc-
tion of the outward boundary normal vector at x and na its
components, m is the normal vector direction at the source
point n and ma its components; AðzÞ ¼ K0ðzÞ þ 2

z K1ðzÞ � 1
z

	 

and BðzÞ ¼ K0ðzÞ þ 1

z K1ðzÞ � 1
z

	 

are dependent on the

modified Bessel’s functions of the second kind K0(z) and
K1(z), where z ¼ kr and r ¼ ffiffiffiffiffiffiffiffiffiffiffi

ra � ra
p

is the known distance
from point x and n with components ra ¼ xaðxÞ � xaðnÞ;
the derivatives of r are r;a ¼ or

oxa
¼ ra

r ; r;n ¼ or
onðxÞ ¼ r;ana and

r;m ¼ or
omðnÞ ¼ �r;ama.

3. Numerical Green’s function approach

Let us define f as the points over a single straight crack
surface, CF ðfÞ ¼ CþðfÞ [ C�ðnÞ, embedded in an infinite
medium under the action of a unit point load applied at
n ðn 62 CF Þ. The fundamental solution for this problem at
x ðx 62 CF Þ, also called the Green’s function, can be written
in terms of a superposition of the classical fundamental
solution plus a complementary part, so that the sum of both
provides satisfaction of the traction free condition on CF [8]

uG
ij ðn; xÞ ¼ u�ijðn; xÞ þ uc

ijðn; xÞ;
pG

ij ðn; xÞ ¼ p�ijðn; xÞ þ pc
ijðn; xÞ:

ð4Þ

Superscripts G; � and c, stand for Green’s fundamental
solution, classical Reissner’s plate solution and comple-
mentary components of the respective fundamental dis-
placements and tractions. Subscript i stands for the
direction of the applied load at n and j for the respective
component at x ðx 62 CF Þ. Using Eq. (2), the complemen-
tary solutions are expressed by the following integrals:

uc
ijðn; xÞ ¼

Z
C�

p�jkðx; fÞcikðn; fÞdCðfÞ ð5Þ

pc
ijðn; xÞ ¼

Z
C�

P �jkðx; fÞcikðn; fÞdCðfÞ ð6Þ

defining the complementary generalized displacements and
tractions at an internal point x ðx 62 CF Þ, as a function of
the generalized fundamental displacement discontinuities
cikðn; fÞ ¼ uikðn; fþÞ � uikðn; f�Þ associated to a unit point
load at n. Note that the fundamental cikðn; fÞ is the solution
of the complementary problem in which the load at the
crack line is minus the standard full space tractions for a
unit point load at n. Eqs. (5) and (6) can be numerically
evaluated using Gaussian quadrature to obtain the funda-
mental Green’s functions as

uG
ij ðn; xÞ ¼ u�ijðn; xÞ þ

XN

n¼1

p�jkðx; fnÞcikðn; fnÞJ nW n;

pG
ij ðn; xÞ ¼ p�ijðn; xÞ þ

XN

n¼1

P �jkðx; fnÞcikðn; fnÞJ nW n;

ð7Þ

where Jn is the Jacobian of the transformation to the
standard quadrature interval, Wn is the corresponding
weight factor at the Gauss station n; N is the total number
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