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Abstract

This paper presents solution verification studies applicable to a class of problems involving wave propagation, fric-
tional contact, geometrical complexity, and localized incompressibility. The studies are in support of a validation exer-
cise of a phenomenological screw failure model. The numerical simulations are performed using a fully explicit transient
dynamics finite element code, employing both standard four-node tetrahedral and eight-node mean quadrature hexa-
hedral elements. It is demonstrated that verifying the accuracy of the simulation involves not only consideration of the
mesh discretization error, but also the effect of the hourglass control and the contact enforcement. In particular, the
proper amount of hourglass control and the behavior of the contact search and enforcement algorithms depend greatly
on the mesh resolution. We carry out the solution verification exercise using mesh refinement studies and describe our
systematic approach to handling the complicating issues. It is shown that hourglassing and contact must both be care-
fully monitored as the mesh is refined, and it is often necessary to make adjustments to the hourglass and contact user
input parameters to accommodate finer meshes. We introduce in this paper the hourglass energy, which is used as an
“error indicator” for the hourglass control. If the hourglass energy does not tend to zero with mesh refinement, then an
hourglass control parameter is changed and the calculation is repeated.
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1. Introduction

Verification and validation are increasingly important components of numerical simulations that are
used to make critical design and policy decisions. Verification is the assurance that the underlying mathe-
matical equations are being solved correctly, while validation ensures that the equations adequately repre-
sent the physics (i.e., reality). The process of validation usually involves comparisons of numerical results to
experimental data. Often, the validation activity is focused on a specific mathematical model developed to
approximate the governing physics in some simplified way.

Verification, in turn, has two main components: code verification and solution verification. Code verifi-
cation involves finding and fixing algorithmic and coding bugs. This usually requires performing simula-
tions of problems with an analytical or some other very accurate known solution (see, for example, [1]).
One popular technique is to generate problems with analytical solutions through the method of manufac-
tured solutions [2]. It is important to note that code verification activities precede the solution verification
and model validation phases.

Solution verification involves the assurance that parameters of the numerical discretization do not
prevent the goals of the numerical simulation from being achieved. In other words, it addresses the
question “is this particular solution accurate enough?”’. Typically, solution verification is adequately ad-
dressed through a posteriori error estimation, which attempts to assess the adequacy of the mesh
resolution. If the discretization error is too large, then one refines the mesh and repeats the calcula-
tion.

This paper addresses solution verification for a generally hard class of problems—explicit, transient
dynamics problems with contact, solved using finite elements that give rise to spurious energy modes called
hourglass modes. In the engineering community, code performance and robustness are typically viewed as
being more important than solution accuracy or solution verification for this problem class. There has been
very little attention paid to rigorous verification of solutions. Despite this lack of attention, solution veri-
fication is becoming more important and, in fact, is supplanting other issues in importance in emerging
applications such as model validation. This paper is a novel study that highlights some critical issues that
arise in the solution verification process. The theory and application presented herein are not new. How-
ever, the systematic approach to solution verification in the presence of complex issues including geometry,
friction, contact, wave propagation, localized incompressibility, and hourglassing, is new. Furthermore,
this study is carried out on a scale not generally realizable in the academic community, involving in one
case millions of elements run on thousands of parallel processors. Thus, these methods are being pushed
in ways not commonly seen before.

The calculations are performed using PRESTO [3], which is a rewrite of PRONTO3D [4] using the
SIERRA [5] computational mechanics framework developed at Sandia National Laboratories. PRESTO
implements commonly used methods for explicit transient dynamics applications. The standard Galerkin
finite element method is used in space, while the time derivative is handled by the explicit central-difference
method. To render the time integrator fully explicit, the mass matrix is lumped (i.e., diagonalized). We use
four-node fully-integrated tetrahedral elements, as well as eight-node mean quadrature hexahedral ele-
ments. The mean quadrature hexahedra require the addition of terms to control the spurious energy modes
(the “hourglass” modes) that are introduced (Section 3.2 reviews the description of the hourglass modes
and how they arise—a complete description is given in [6]). Improper treatment of the hourglass control
terms can cause a calculation to fail. We will show that hourglass control parameters that are appropriate
for a nominal coarse mesh may not be sufficient for a refined mesh. In this paper, we introduce a new indi-
cator for monitoring the adequacy of the hourglass control. The indicator is essentially an energy term,
which we refer to as the hourglass energy. We use the hourglass energy the same way that an error indicator
for adaptive mesh refinement would be used. If the hourglass energy grows too large, then we refine the
hourglass viscosity parameter and repeat the calculation.
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