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Abstract

The solution of the governing steady transport equations for momentum, heat and mass transfer in fluids undergo-
ing non-equilibrium chemical reactions can be extremely challenging. The difficulties arise from both the complexity of
the nonlinear solution behavior as well as the nonlinear, coupled, non-symmetric nature of the system of algebraic
equations that results from spatial discretization of the PDEs. In this paper, we briefly review progress on developing
a stabilized finite element (FE) capability for numerical solution of these challenging problems. The discussion considers
the stabilized FE formulation for the low Mach number Navier–Stokes equations with heat and mass transport with
non-equilibrium chemical reactions, and the solution methods necessary for detailed analysis of these complex systems.
The solution algorithms include robust nonlinear and linear solution schemes, parameter continuation methods, and
linear stability analysis techniques. Our discussion considers computational efficiency, scalability, and some implemen-
tation issues of the solution methods. Computational results are presented for a CFD benchmark problem as well as for
a number of large-scale, 2D and 3D, engineering transport/reaction applications.
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1. Introduction

Physical problems in a number of scientific and engineering fields can be described by a system of cou-
pled nonlinear PDEs. One of the main interests in these fields is the problem of determining steady and/or
time dependent states evolving with changes of characteristic parameters. These parameters arise in various
ways. The parameters can be coefficients of the PDEs, characteristic values from the boundary conditions,
or characteristic dimensions from the domain of the solution. Our discussion focuses on applications
involving steady-state solution of transport/reaction systems. However, the methods, algorithms, and par-
allel implementations presented have broad applicability to many scientific fields.

The numerical challenge for transport/reaction system simulation is the solution of the partial differen-
tial equations (PDEs) describing momentum, heat, and multicomponent mass transfer with chemical reac-
tion source terms. These governing PDEs are outlined in residual form in Table 1, and are valid for low
Mach number flows operating at a thermodynamic system pressure of eP . In these equations the transport
properties are the mixture density, q, mixture viscosity, l, mixture specific heat, bCP , the mixture thermal
conductivity, k, the kth species mass diffusivity, Dk, and thermal diffusivity, DT

k . The source terms are de-
fined by the molecular weight, Wk, the specific enthalpy, ĥk, and the molar production per unit volume, _xk

for the kth species. This system of PDEs is non-self adjoint, strongly coupled, highly nonlinear, and char-
acterized by physical phenomena that span a large range of length and time scales. The high degree of cou-
pling and nonlinearity in this system is generated from the convection terms, the chemical reaction source
terms, and the strong dependence of the transport properties and chemical kinetics on the thermodynamic
state, ðT ; eP ; Y kÞ.

Our discretization of the governing transport/reaction equations employs stabilized finite element (FE)
methods. This formulation is based on the developments of Hughes et al. (see e.g., [34,5,33,31,38,30,
36,35,66]) in a seminal set of papers that developed this very successful and powerful discretization meth-
odology. The stabilized formulation circumvents the Ladyzhenskaya–Babuska–Brezzi condition (see e.g.,
[4,24]) for compatible discretization for mixed finite element formulations of the saddle point problem aris-
ing from discretization of the incompressible Navier–Stokes equations. The stabilized FE formulation al-
lows for equal order interpolation of the incompressible Navier–Stokes equations and eliminates spurious
pressure modes. Our formulation implements a simplified form of a consistently stabilized FE method [1].
In the current context of transport/reaction systems, the use of equal order interpolation simplifies the data
structures of a parallel unstructured FE code and the linear algebra interface for iterative solution methods.

Additionally, a stabilized FE strategy is also used to control instability in the Galerkin FE formulation
for highly convected flows. The methodology that we employ is based on a variation of the stabilized FE

Table 1
Residual form of governing transport/reaction PDEs and simplified constitutive equations

Momentum Rm = q(u Æ $u) � $ Æ T � qg

Total mass RP = $ Æ (qu)

Thermal energy RT ¼ qbCp½u � rT � þ r � qþ
XNs

k¼1
ĥkW k _xk

Mass fraction for species k
RY k ¼ q½u � rY k � þ r � jk � W k _xk ; k ¼ 1; 2; . . . ;Ns � 1

RYNs
¼

XNs

k¼1
Y k � 1

Newtonian stress tensor T ¼ �P IþW ¼ �PI� 2

3
lðr � uÞIþ l½ruþruT�

Heat flux vector q ¼ �krT þ
XNs

k¼1
ĥk jk

Mass species flux vector jk ¼ qDkrY k � DT
k
rT
T

The primitive variables are the velocity vector u, the temperature T, the hydrodynamic pressure P, and the Ns species mass fractions Yk.
The physical and transport properties are a function of the local T and Yk and a global system pressure eP .
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