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a b s t r a c t

This paper investigates the finite time stability (FTS) for nonlinear impulsive sampled-data systems. By
constructing an appropriated Lyapunov function and employing average impulsive interval (AII) method,
some FTS criteria for the nonlinear impulsive sampled-data systems are derived in terms of linear matrix
inequalities (LMIs), which can be easily verified via the LMI toolbox. The hybrid controller including
sampled-data controller and impulsive controller is designed via the established LMIs. Moreover, the
impulse effect considered in this paper including stabilizing impulse and destabilizing impulse. Our
developed results are less conservative than the recent work in the literature. Finally, two numerical
examples are provided to show the applications of the proposed criteria.

& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

During the past decades, finite time stability (FTS) in dynamical
systems, have received considerable attentions since it was first
introduced in 1950s and it has found applications in practical
process, such as, avoiding saturation or the excitation of nonlinear
dynamics during the transient [1,2]. FTS is a system property
concerning the quantitative behavior of the state variables over an
assigned finite-time interval. Given a bound on the initial condi-
tion, a system is said to be FTS if its state (weighted) norm does
not exceed a certain threshold during the specified time interval.
Hence FTS enables us to specify quantitative bounds on the state of
a dynamical system and play an important role in addressing
transient performances of control systems. Therefore, in recent
years, many interesting result for FTS have been proposed, see [3–
7] for instances. It should be noticed that FTS and Lyapunov
Asymptotic Stability (LAS) are different concepts, indeed, a system
can be FTS but not LAS, and vice versa [8–10]. While LAS deals with
the behavior of a system within a sufficiently long (in principle,
infinite) time interval, FTS is a more practical concept, useful to

study the behavior of the system within a finite (possibly short)
interval, and therefore it finds application whenever it is desired
that the state variables do not exceed a given threshold during the
transients, such as robot control, missile systems and so on [11,12].

Recently, many interesting control schemes are proposed to
design effective controllers, such as activation feedback control,
the linear coupling method, the sliding mode control, the sam-
pled-data control, and the impulsive control, see [16–21]. Different
control schemes have different advantages. Especially, sampled-
data control method has been studied extensively in the past
years. As we know, the analysis of linear control systems is based
on the fact that the signals at various points in the system are
continuous with respect to time. However, in some applications it
is convenient to use one or more control signals at discrete time
intervals. The control systems using one or more signals at discrete
time intervals are known as sampled-data control systems. In a
sampled-data control method, the signal at any one or more places
is sampled and appears in the form of a pulse at certain intervals.
Compared with continuous controller, the sampled-data controller
has many advantages such as easy installation, high reliability,
maintenance with low cost, and efficiency. Therefore, sampled-
data control systems have been becoming important topic in
various research fields [13–15,18]. For example, a new looped-
functional-based approach has been proposed in [13] for analyzing
the stability of periodic and aperiodic uncertain sampled-data
systems with incremental delays. [14] have presented a result on
sampled-data-based state feedback stabilization of a class of

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/isatrans

ISA Transactions

http://dx.doi.org/10.1016/j.isatra.2017.07.025
0019-0578/& 2017 ISA. Published by Elsevier Ltd. All rights reserved.

☆This work was supported by National Natural Science Foundation of China
(11301308, 61673247), and the Research Fund for Distinguished Young Scholars and
Excellent Young Scholars of Shandong Province (ZR201702100145, ZR2016JL024).
The paper has not been presented at any conference.

n Corresponding author at: School of Mathematics and Statistics, Shandong
Normal University, Ji'nan 250014, PR China.

E-mail address: lxd@sdnu.edu.cn (X. Li).

Please cite this article as: Lv X, Li X. Finite time stability and controller design for nonlinear impulsive sampled-data systems with
applications. ISA Transactions (2017), http://dx.doi.org/10.1016/j.isatra.2017.07.025i

ISA Transactions ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/00190578
www.elsevier.com/locate/isatrans
http://dx.doi.org/10.1016/j.isatra.2017.07.025
http://dx.doi.org/10.1016/j.isatra.2017.07.025
http://dx.doi.org/10.1016/j.isatra.2017.07.025
mailto:lxd@sdnu.edu.cn
http://dx.doi.org/10.1016/j.isatra.2017.07.025
http://dx.doi.org/10.1016/j.isatra.2017.07.025
http://dx.doi.org/10.1016/j.isatra.2017.07.025
http://dx.doi.org/10.1016/j.isatra.2017.07.025


switched linear neutral systems under asynchronous switching.
The problem of sampled-data exponential synchronization has
been investigated in [15] for a class of Markovian jumping chaotic
neural networks with time delays. It should be mentioned that,
there are also some studies on the FTS of sampled-data systems
[22,23]. Robust finite-time sampled-data control of linear systems
has been studied in [22]. Based on the constructed Lyapunov-
Krasovskii functional, Wirtinger integral inequality and linear
matrix inequalities (LMIs), some FTS conditions of fuzzy systems
have been derived in [23].

On the other hand, the impulse as an effective control method
has been widely used in many areas such as orbital transfer of
satellite, dosage supply in pharmacokinetics, ecosystems man-
agement, see [24–29]. The basic theory for impulsive differential
systems has been extensively investigated in the past several
years, see [30–36]. Its necessity and importance lie in that, in many
cases, a real system may encounter some abrupt changes at certain
time moments and cannot be considered continuously. The main
idea of impulsive control is to change the states instantaneously at
certain instants. Therefore, impulsive control can reduce control
cost and the amount of transmitted information drastically. A
novel concept of the dual-stage impulsive control and its practical
framework were proposed to synchronize a class of chaotic DNNs
with different time-varying parametric uncertainties for the first
time [38]. The designed dual-stage impulsive controller can not
only realize the exponential synchronization with error bound but
also estimate the exponential convergence rate. It is worth
pointing out that the results presented in this paper provide an
important theoretical foundation for impulsive synchronization of
multi-perturbation delayed nonlinear systems. Until now, there
are many valuable results for FTS of impulsive systems [39–41]. In
[39], necessary and sufficient condition for FTS of impulsive dy-
namical linear systems is proposed. In [40], necessary and suffi-
cient conditions for the input-output finite-time stability of im-
pulsive linear systems were investigated. The literature [41] stu-
died FTS of genetic regulatory networks with impulsive effects.
However, to the best of our knowledge, there are few results about
the FTS of sampled-data impulsive systems [43]. As we know, the
concept of average impulse interval (AII) has been firstly in-
troduced in [42], which is suitable for characterizing a wide range
of impulsive signals. As long as the AII constant satisfies certain
condition, it is not necessary to impose restrictions on the upper
and lower boundary of impulsive intervals. Therefore, AII is an
effective tool to deal with the non-uniformly distributed impulses.
Based on this method, very recently ref [43] established some FTS
criteria for the linear time-invariant sampled-data system with
impulsive effects, where the requirement on the upper-lower
bounds of the sampled intervals is fully removed. However, the
result in [43] is based on the fact that there exists strict restriction
on the state of system at the impulsive time tk, i.e., it assumed that
there exists a positive constant >d 0 such that ( ) ( ) <x t Px t dT

k k for
all = …k r1, 2, , , where d will be used to determine the FTS. Note
that in real applications, it is usually difficult to estimate the state
of the system. Moreover, the impulsive controller is not designed
in the paper. These motivate the present study.

In present paper, the problems of FTS are investigated for a
class of nonlinear impulsive sampled-data systems. By construct-
ing an appropriated Lyapunov function and employing AII method,
some LMI-based sufficient conditions are derived to guarantee to
the FTS of the addressed nonlinear systems. We don't impose any
restriction on the state of the system, which improve the result in
[43]. The hybrid controller including sampled-data controller and
impulsive controller is designed via the established LMIs. The
advantage of the hybrid controller is that when a controller is
unactivated or activated but the control effect is not so well, the

another controller will play positive effect and be helpful to the
control of the system. Moreover, our result can be applied to the
system subject to destabilizing impulses, that is, when the im-
pulses destroy the dynamics, we can utilizing the sampling-data
controller to stabilize the system and achieve the desirable FTS.
Thus the impulse effect considered in this paper including stabi-
lizing impulse and destabilizing impulse. The rest of this paper is
organized as follows. In Section 2, some notations, definitions and
a well-known technical lemma are given. Section 3 presents the
main results. As applications, two numerical examples and their
computer simulations are provided in Section 4. Finally, the paper
is concluded in Section 5.

Notations. Let + denote the set of positive integer,  the set of
real numbers, + the set of positive numbers, n the n-dimen-
sional real spaces equipped with the Euclidean norm |•| and  ×n m

the n�m-dimensional real spaces. >A 0 or <A 0 denotes that the
matrix A is a symmetric and positive definite or negative definite
matrix. The notation AT and −A 1 denote the transpose and the in-
verse of A, respectively. If A B, are symmetric matrices, >A B
means that −A B is positive definite matrix. λ ( )Amax and λ ( )Amin
denotes the maximum eigenvalue and the minimum eigenvalue of
matrix A, respectively. I denotes the identity matrix with appro-
priate dimensions and Λ = { … }n1, 2, , . For ⊆J and ⊆S k with

≤ ≤k n1 , let φ φ( ) = { → ∈ }C J S J S C, : , 0 and ⎡⎣ )φ= { ∞ →t P: , ,0
φ ∈ }F0 , where C0 is the set of continuous functions, and F0 is the
set of continuously differentiable functions. Notation ⋆always
denotes the symmetric block in a symmetric matrix.

2. Preliminaries

Consider the following nonlinear system,

̇( ) = ( ) + ( ( )) + ( ) ( )x t Ax t Bf x t u t , 1

where ( ) = ( ( ) … ( )) ∈x t x t x t, , n
T n

1 and ( ) ∈u t n denotes the state
and the control input, respectively; ∈ ×A B, n n; the nonlinearity

  ∈ ( )f ,n n satisfies
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for all α α≠1 2, where = ( … )f f f, , n
T

1 and for any Λ∈i , ( ) =f 0 0,i
−li

and +li are some real constants and they may be positive, zero or
negative.

We consider the hybrid controller in the form of

⎡⎣ )δ( ) = ( ) + ( ) ( − ) ∈ ∈+ + +u t K x t K x t t t t t t k, , , ,k k k k1 2 1 1

where K ,1 ∈ ×K n n
2 are the feedback controller gains to be de-

signed, δ(·) is the Dirac delta function with sequence ξ = { ⋯}t t, ,1 2
satisfying
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t t t t t0 , lim .k
k
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Then, the system (1) is rewritten as
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where ▵ = ( ) − ( ) ( ) = ( )− +x x t x t x t x t,k k k k and ( ) = ( )−
→ −x t x tlimk t tk

.

To derive the main results, the following definitions and lemma
are introduced.

Definition 1 (Lu et al. [42]). The average impulsive interval (AII) of
the impulsive sequence ξ = { ⋯}t t, ,1 2 is equal to τα if there exist

∈ +N0 and τ >α 0 such that
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