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a b s t r a c t

This paper proposes a tracking control strategy for nonlinear systems without needing a prior knowledge
of the reference trajectory. The proposed method consists of a set of local controllers with appropriate
overlaps in their stability regions and an on-line switching strategy which implements these controllers
and uses some augmented intermediate controllers to ensure steering the system states to the desired
set points without needing to redesign the controller for each value of set point changes. The proposed
approach provides smooth transient responses despite switching among the local controllers. It should
be mentioned that the stability regions of the proposed controllers could be estimated off-line for a range
of set-point changes. The efficiencies of the proposed algorithm are illustrated via two example simu-
lations.

& 2017 Published by Elsevier Ltd. on behalf of ISA.

1. Introduction

Model predictive control (MPC) is one of the well-known
control strategies in the process industry due to its capability of
optimally controlling multivariable systems with constraints [1,2].
Although a large number of industrial processes are inherently
nonlinear, most of the MPC techniques implemented on the real
processes are based on linear models. To enhance the perfor-
mance, a practical control system with large operating regions
needs to deal with nonlinearity explicitly. However, a nonlinear
MPC could act inadequately because of the computational com-
plexity generally exists in on-line implementation of the con-
troller. As a result, some alternative approaches to consider the
nonlinearity in the controller design have been proposed in the
literature [3,4].

Robust model predictive control (RMPC) is a convenient ap-
proach to consider the modeling error in the controller design.
Meanwhile, nonlinear systems could be represented by linear
models along with structured or unstructured uncertainties. Thus,
a robust control strategy could be implemented instead of a
nonlinear one in order to reduce the computational complexity.
Therefore, an RMPC strategy could be applied in nonlinear and
uncertain cases concurrently. The RMPC techniques mainly are
based on minimization of the worst-case objective function in-
corporating a set of robustness constraints. In this case, [5] in-
troduced a systematic solution for RMPC problem based on linear

matrix inequality (LMI) for systems with polytopic and structured
feedback uncertainties which could estimate the stability region of
the controller. This method was modified next to decrease com-
putational time [6,7], reduce conservativeness [8–12], or simplify
the representation of the uncertainties [13–16]. Moreover, [17]
proposed a scheduled RMPC algorithm that enlarges the operating
region of the controller introduced in [5] efficiently and later on
[18] proposed a method that improves its transient response.

Most of the RMPC methods have been formulated for regula-
tion problems that is steering the system to a fixed point. In
practice however, it is often required to track a changing set point.
When the set point changes, the stabilizing design of the RMPC
may not be valid anymore and/or feasibility of the controller may
be lost and the controller fails to track the set point. This issue
requires redesigning of the RMPC for each value of the changing
set point. In order to solve the tracking problem, [19] introduced
RMPC based on a dual-model paradigm which guarantees the
offset free tracking of set point changes. Ref. [20] proposed a
tracking method which guarantees an H1 norm bound with an
optimized linear quadratic performance. Refs. [21–23] presented
tracking RMPC approaches by using the notion of tubes. In [24],
tracking scheduled RMPC is proposed for linear time invariant
systems such that a set of controllers should be designed off-line
based on a predefined target. Ref. [25] introduced a robust tracking
MPC based on derivation of an invariant set which provides both a
large stabilizable set and the closed loop performance. Ref. [26]
proposed a nonlinear MPC method augmented with a disturbance
observer (DOB). The DOB estimates internal and external dis-
turbances and then in addition to feedback MPC, a feedforward
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controller is implemented to compensate the disturbances. In [27],
an offset-free MPC approach based on prediction accuracy en-
hancement via a DOB was developed for a general disturbed sys-
tem and the computational burden of the proposed method was
reduced as compared with the existing offset-free MPCs.

Advantages of RMPC such as giving the region of stability and
considering input and state constraints in optimization problem
make this controller attractive but it has limitations in applications
on systems with large operating regions and changing set-points.
This paper is devoted to solve the problem by a novel scheduling
RMPC scheme. In the off-line part of the proposed method, a set of
local controllers is designed that have appropriate overlaps in their
stability regions. An on-line part implements a novel switching
strategy which uses the designed controllers in off-line part and
also some augmented intermediate controllers that are designed
on-line. Some features of the suggested method are listed below

– The proposed controller could be applied for constrained non-
linear systems.

– A prior knowledge of the reference trajectory is not required.
– The asymptotic stability of the closed-loop system is guaranteed
under set-point changes without needing to change the control
scheme for each value of set-points.

– The stability region of the controller for a determined range of
set-point changes could be approximated off-line.

– Implementing augmented intermediate controllers in on-line
part could prevent the spikes appearing at the moment of
switching between adjacent local controllers in the scheduling
scheme.

The paper is organized as follows. In Section 2 some mathe-
matical preliminaries are described. Section 3 presents the pro-
posed set point tracking RMPC strategy. In order to illustrate the
effectiveness of the proposed method two examples are presented
in Section 4. Finally, Section 5 provides the concluding remarks.

2. Mathematical preliminaries

The proposed regulator in [13] and some useful lemmas and
remarks which are used in the remainder of the paper are pre-
sented in this section. Let consider a nonlinear discrete-time sys-
tem represented by

( ) ( )+ = ( ( )) ( )x k f x k u k1 , , 1

and subject to

( ) ≤ = … ( )u k u j m, 1, 2, , , 2j j,max

( ) ≤ = … ( )x k x j n, 1, 2, , , 3j j,max

where ( )∈x k Rn and ( )∈u k Rm are the state and input vectors of the
system respectively, ( )f . , . is a Lipschitz and C1 function where

( ) =f 0,0 0. To design an RMPC based on [13], at first the nonlinear
system in (1) is rewritten in uncertain linear representation form

( )( ) ( ) ( ) ( ) ( )+ = + + ̃ ( )x k Ax k Bu k f x k u k1 , , 4

where = ∂ ∂ ( )A f x/ 0,0 , = ∂ ∂ ( )B f u/ 0,0 . Since f is a Lipschitz non-

linearity then ( ) ( )( ) ( ) ( )̃ ( ) = ( ) − − ( )f x k u k f x k u k Ax k Bu k, , is
bounded as

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( ) ( )( ) ( ) ( ) ( ) ( ) ( )̃ ̃ ≤ ( ) ( ) ( )f x k u k f x k u k x k u k W W x k u k, , , 5
T T T T T T T

where W WT is a positive definite matrix and represents the
Lipschitz coefficient.

Assumption 1. The pair ( )A B, is stabilizable by state feedback
control law.

The objective function in MPC which is minimized to optimize
performance of the closed-loop system is defined as follows

{ }( ) ( ) ( )∑= + + + ( + | ) ( + | )
( )=

∞

J k x k ik Qx k ik u k i k Ru k i k ,
6i

T T

0

where >Q 0, >R 0, ( )+x k ik is state at time +k i predicted based
on the measurements at time k and ( )+u k ik is control move at
time +k i computed by minimizing ( )J k at time k. To solve the
given optimization problem for the nonlinear system in (1) via
LMI, first one should replace equality in (6) by an inequality which
is done by defining an upper bound for ( )J k . Consider a quadratic
function ( ) =V x x PxT with >P 0 and ( ) =V 0 0 satisfies the fol-
lowing inequality at sampling time k

( ) ( ) ( ) ( )( + + ) − ( + ) ≤ − + +

− ( + | ) ( + | ) ( )

V x k i k V x k ik x k ik Qx k ik

u k i k Ru k i k

1

. 7

T

T

By summing both sides of (7) from =i 0 to = ∞i one could find
that

( ) ( ) ( ) ( )∞ ∞ − ≤− ( ) ( )x k Px k x kk Px kk J k . 8
T T

For the asymptotic stability of the closed-loop system, ( )∞x k
must be zero and thus to have an asymptotic stability it follows
that

( )( ) γ( ) ≤ ≤ ( )J k V x kk , 9

where γ is a positive scalar that can be an upper bound for (6).
As a result, the RMPC problem is defined as follows

Theorem 1. Consider system (1) subject to input and state con-

straints as (2) and (3). Let ( )x kk be the measured state ( )x k at sample

time k. Then, the state feedback matrix ( )F k in the control law

( ) ( ) ( )+ = +u k ik F k x k ik that minimizes the upper bound ( )( )V x kk of

the objective function ( )J k at instant k is given by = −F YX 1, where

>X 0 and Y are obtained from the solution of the following opti-
mization problem with variables γ , ξ, X , Y , M , N , = [ ]Z X;Y .

γ ( )γ ξmin 10X Y M N, , , , ,

subject to

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )
( )

≥ >
( )

I x kk

x kk X
X0, 0,

11

T

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥ ( )

ε ε

ε

ε ξ

γ

γ

+ ( + ) + ( ) ( ) ( )

+ ( + )

+ ( ) ≥

12

X AX BY WZ Q X R Y

AX BY X

WZ I

Q X I

R Y I

1 1 1/

1 0 0 0

1 1/ 0 0 0

0 0 0

0 0 0

0,

T T T T1/2 1/2

1/2

1/2

ξ− ≥ ( )X I 0, 13
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